【題目】定義在[-1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[-1,0]時,f(x)=- (a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
【答案】見解析
【解析】
解 (1)∵f(x)是定義在[-1,1]上的奇函數(shù),
∴f(0)=0,∴a=1,
∴當(dāng)x∈[-1,0]時,f(x)=-.
設(shè)x∈[0,1],則-x∈[-1,0],
∴f(-x)=-=4x-2x,
∵f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=2x-4x.
∴f(x)在[0,1]上的解析式為f(x)=2x-4x.
(2)f(x)=2x-4x,x∈[0,1],
令t=2x,t∈[1,2],g(t)=t-t2=-+,
∴g(t)在[1,2]上是減函數(shù),
∴g(t)max=g(1)=0,即x=0,f(x)max=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,為正三角形,,,點(diǎn),分別為線段、的中點(diǎn),、分別為線段、上一點(diǎn),且,.
(1)確定點(diǎn)的位置,使得平面;
(2)試問:直線上是否存在一點(diǎn),使得平面與平面所成銳二面角的大小為,若存在,求的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠在甲、乙兩地的兩個分廠各生產(chǎn)某種機(jī)器12臺和6臺. 現(xiàn)銷售給A地10臺,B地8臺. 已知從甲地調(diào)運(yùn)1臺至A地、B地的運(yùn)費(fèi)分別為400元和800元,從乙地調(diào)運(yùn)1臺至A地、B地的費(fèi)用分別為300元和500元.
(1)設(shè)從甲地調(diào)運(yùn)x臺至A地,求總費(fèi)用y關(guān)于臺數(shù)x的函數(shù)解析式;
(2)若總運(yùn)費(fèi)不超過9 000元,問共有幾種調(diào)運(yùn)方案;
(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案及最低的費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,對于任意的都有,設(shè)時, .
(1)求;
(2)證明:對于任意的, ;
(3)當(dāng)時,若不等式在上恒定成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=,
(1)畫出函數(shù)y=f(x)的圖象;
(2)討論方程|f(x)|=a的解的個數(shù).(只寫明結(jié)果,無需過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足 , 是數(shù)列的前項和.
(1)求數(shù)列的通項公式;
(2)令,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).
(1)若g(x)=m有實根,求m的取值范圍;
(2)確定m的取值范圍,使得g(x)-f(x)=0有兩個相異實根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點(diǎn)處的切線的斜率為1.
(1)若函數(shù)f(x)的圖象在上為減函數(shù),求的取值范圍;
(2)當(dāng)時,不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com