A. | 最大值為16 | B. | 是定值24 | C. | 最小值為4 | D. | 是定值4 |
分析 設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{BP}$=t$\overrightarrow{BC}$,根據(jù)平面向量的數(shù)量積計算$\overrightarrow{AP}$•﹙$\overrightarrow{AB}$+$\overrightarrow{AC}$﹚的值.
解答 解:設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{BP}$=t$\overrightarrow{BC}$,
則$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$=$\overrightarrow$-$\overrightarrow{a}$,${\overrightarrow{a}}^{2}$=${\overrightarrow}^{2}$=16,$\overrightarrow{a}$$•\overrightarrow$=4×4×cos60°=8;
∴$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$=$\overrightarrow{a}$+t﹙$\overrightarrow$-$\overrightarrow{a}$﹚=﹙1-t﹚$\overrightarrow{a}$+t$\overrightarrow$,
又∵$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{a}$+$\overrightarrow$,
∴$\overrightarrow{AP}$•﹙$\overrightarrow{AB}$+$\overrightarrow{AC}$﹚=[﹙1-t﹚$\overrightarrow{a}$+t$\overrightarrow$]•﹙$\overrightarrow{a}$+$\overrightarrow$﹚
=﹙1-t﹚${\overrightarrow{a}}^{2}$+[﹙1-t﹚+t]$\overrightarrow{a}$•$\overrightarrow$+t${\overrightarrow}^{2}$
=﹙1-t﹚×16+8+t×16=24,
∴$\overrightarrow{AP}•(\overrightarrow{AB}+\overrightarrow{AC})$是定值24.
故選:B.
點評 本題主要考查平面向量的數(shù)量積運算和線性運算,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (0,2) | C. | (-1,2) | D. | (1+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1丈3尺 | B. | 5丈4尺 | C. | 9丈2尺 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}-1$ | B. | $-\frac{{\sqrt{3}}}{2}+1$ | C. | $\frac{{\sqrt{3}}}{2}-1$ | D. | $\frac{{\sqrt{3}}}{2}+1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com