【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為點(diǎn)是橢圓上任意一點(diǎn),且的最大值為4,橢圓的離心率與雙曲線的離心率互為倒數(shù).

1)求橢圓方程;

2)設(shè)點(diǎn),過點(diǎn)作直線與圓相切且分別交橢圓于,求直線的斜率.

【答案】(1);(2.

【解析】

(1)利用橢圓的離心率,以及基本不等式和橢圓的定義,求出得值,即可得到橢圓的標(biāo)準(zhǔn)方程;

(1)設(shè)為,由直線與圓相切,得到,直線的方程與橢圓的方程聯(lián)立,求得,同理求得,再結(jié)合斜率公式,即可求解.

(1)由題意,橢圓的定義,可得,

,解得,

由雙曲線離心率為2,可得橢圓離心率為,即,即

所以,又由,

所以橢圓方程為.

(2)顯然直線的斜率存在,設(shè)為,

由于直線與圓相切,則

直線,

聯(lián)立方程組

所以,得

同理,當(dāng)與橢圓相交時(shí),可得

所以,

所以直線的斜率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國(guó)鐵路營(yíng)業(yè)里程達(dá)到13.1萬公里,其中高鐵營(yíng)業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營(yíng)里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是( )

A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營(yíng)里程增加最顯著

B.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程與年價(jià)正相關(guān)

C.2018年高鐵運(yùn)營(yíng)里程比2014年高鐵運(yùn)營(yíng)里程增長(zhǎng)80%以上

D.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程數(shù)依次成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖(1),函數(shù)的圖象與x軸圍成一個(gè)封閉區(qū)域A(陰影部分),將區(qū)域A(陰影部分)沿z軸的正方向上移6個(gè)單位,得到一幾何體.現(xiàn)有一個(gè)與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區(qū)域A(陰影部分)的面積相等,則此柱體的體積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率;先由計(jì)算器給出09之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2表示沒有擊中目標(biāo),3、4、56、7、8、9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20隨機(jī)數(shù):

根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為(

A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,已知在直四棱柱中,

,,

(1)求證:平面

(2)設(shè)上一點(diǎn),試確定的位置,使平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量ab滿足:|a|=4,|b|=3,(2a-3b)·(2ab)=61,

(1) 求向量ab的夾角θ;

(2) 求|ab|;

(3) 若,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,是橢圓上一動(dòng)點(diǎn)(與左、右頂點(diǎn)不重合)已知的內(nèi)切圓半徑的最大值為,橢圓的離心率為.

1)求橢圓C的方程;

2)過的直線交橢圓兩點(diǎn),過軸的垂線交橢圓與另一點(diǎn)不與重合).設(shè)的外心為,求證為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng),以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國(guó)內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長(zhǎng)勢(shì)與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為,,,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)的值評(píng)定人工種植的青蒿的長(zhǎng)勢(shì)等級(jí):若,則長(zhǎng)勢(shì)為一級(jí);若,則長(zhǎng)勢(shì)為二級(jí);若,則長(zhǎng)勢(shì)為三級(jí);為了了解目前人工種植的青蒿的長(zhǎng)勢(shì)情況,研究人員隨機(jī)抽取了10塊青蒿人工種植地,得到如下結(jié)果:

種植地編號(hào)

種植地編號(hào)

1)在這10塊青蒿人工種植地中任取兩地,求這兩地的空氣濕度的指標(biāo)相同的概率;

2)從長(zhǎng)勢(shì)等級(jí)是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為,從長(zhǎng)勢(shì)等級(jí)不是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為,記隨機(jī)變量,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓是某個(gè)旅游景點(diǎn)的平面示意圖,為了保護(hù)景點(diǎn)和方便游客觀賞,管理部門規(guī)劃從公路上某點(diǎn)起修建游覽線路、、分別與半圓相切,且四邊形是等腰梯形.已知半圓半徑百米,每修建1百米游覽道路需要費(fèi)用為20萬元,設(shè)與圓的切點(diǎn)為, (單位:弧度).

1)試將修建游覽道路所需費(fèi)用表示為的函數(shù);

2)試求修建游覽道路所需最少費(fèi)用為多少萬元?(精確到0.1,參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案