【題目】(12分)如圖,已知在直四棱柱中,

,,

(1)求證:平面

(2)設(shè)上一點,試確定的位置,使平面,并說明理由.

【答案】見解析。

【解析】

試題(1)因為此幾何是一個直棱柱,所以.根據(jù)線面垂直的判定定理,所以只需再證即可.

(2)從圖上分析可確定E應(yīng)為DC的中點,然后證明:四邊形A1D1EB是平行四邊形,即可得到D1E//A1B,

根據(jù)線面平行的判定定理,問題得證.

(1)設(shè)的中點,連結(jié),則四邊形為正方形,

.故,,,,即.又,平面

(2)證明:DC的中點即為E點,連D1E,BE

所以四邊形ABED是平行四邊形所以ADBE,又ADA1D1A1D1

所以四邊形A1D1EB是平行四邊形 D1E//A1B ,所以D1E//平面A1BD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017高考新課標(biāo)Ⅲ,19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC;

(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國20181月至12月石油進(jìn)口量統(tǒng)計圖(其中同比是今年第個月與去年第個月之比),則下列說法錯誤的是(

A.2018年下半年我國原油進(jìn)口總量高于2018年上半年

B.201812個月中我國原油月最高進(jìn)口量比月最低進(jìn)口量高1152萬噸

C.2018年我國原油進(jìn)口總量高于2017年我國原油進(jìn)口總量

D.20181—5月各月與2017年同期相比較,我國原油進(jìn)口量有增有減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,則曲線的極坐標(biāo)方程為.

1)求圓的普通方程與的直角坐標(biāo)方程;

2)點是曲線上一點,由向圓引切線,切點分別為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點為極點, 軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.已知直線 .

(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(Ⅱ)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

[選修 4-5]不等式選講

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為是橢圓上任意一點,且的最大值為4,橢圓的離心率與雙曲線的離心率互為倒數(shù).

1)求橢圓方程;

2)設(shè)點,過點作直線與圓相切且分別交橢圓于,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的五面體中,四邊形為菱形,且,,的中點.

1)求證:平面;

2)若平面平面,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】13分)編號為A1,A2,A1616名籃球運動員在某次訓(xùn)練比賽中的得分記錄如下:

運動員編號

A1

A2

A3

A4

A5

A6

A7

A8



得分

15

35

21

28

25

36

18

34

運動員編號

A9

A10

A11

A12

A13

A14

A15

A16



得分

17

26

25

33

22

12

31

38

)將得分在對應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格;

區(qū)間

[1020

[20,30

[30,40]

人數(shù)




)從得分在區(qū)間[20,30)內(nèi)的運動員中隨機(jī)抽取2人,

i)用運動員的編號列出所有可能的抽取結(jié)果;

ii)求這2人得分之和大于50分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若,函數(shù),若存在、,使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案