分析 (1)設(shè)f(x)=ax2+bx+c,由f(0)=3得c=3,由f(x+1)-f(x)=2x+3,得2ax+a+b=2x+3,解方程組求出a,b的值,從而求出函數(shù)的解析式;
(2)g(x)=f(x)-kx=x2+(2-k)x+3的圖象是開口朝上,且以直線x=$\frac{k-2}{2}$為對(duì)稱軸的拋物線,分類討論給定區(qū)間與對(duì)稱軸的關(guān)系,可得不同情況下ϕ(k)的表達(dá)式.
解答 解:設(shè)f(x)=ax2+bx+c,由f(0)=3得c=3,
故f(x)=ax2+bx+3.
因?yàn)閒(x+1)-f(x)=2x+3,
所以a(x+1)2+b(x+1)+3-(ax2+bx+3)=2x+3.
即2ax+a+b=2x+3,
∴$\left\{\begin{array}{l}2a=2\\ a+b=3\end{array}\right.$,
解得:a=1,b=2,
∴f(x)=x2+2x+3…4分;
(2)g(x)=f(x)-kx=x2+(2-k)x+3的圖象是開口朝上,且以直線x=$\frac{k-2}{2}$為對(duì)稱軸的拋物線,
當(dāng)$\frac{k-2}{2}$<0,即k<2時(shí),當(dāng)x=0時(shí),g(x)取最小值3;
當(dāng)0≤$\frac{k-2}{2}$≤2,即2≤k≤6時(shí),當(dāng)x=$\frac{k-2}{2}$時(shí),g(x)取最小值$\frac{-{k}^{2}+4k+8}{4}$;
當(dāng)$\frac{k-2}{2}$>2,即k>6時(shí),當(dāng)x=2時(shí),g(x)取最小值11-2k;
綜上可得:ϕ(k)=$\left\{\begin{array}{l}3,k<2\\ \frac{-{k}^{2}+4k+8}{4},2≤k≤6\\ 11-2k,k>6\end{array}\right.$,…12分.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | (0,1) | C. | (1,0) | D. | (a,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | $\frac{8}{9}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com