函數(shù)f(x)=
ax+b
cx+d
的定義域是
 
考點:函數(shù)的定義域及其求法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,cx+d≠0,注意討論c是否為0.
解答: 解:由題意,
cx+d≠0,
若c=0,則d≠0,其定義域為R;
若c≠0,則x≠-
d
c
,
其定義域為:{x|x≠-
d
c
}.
故答案為:R(c=0)或{x|x≠-
d
c
}(c≠0).
點評:本題考查了函數(shù)的定義域的求法,由題意知分母不能為0,注意討論即可,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(sinx-cosx)=sinx-cosx+2sinxcosx+1,則f(
1
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)log23=a,5b=9,則log25
27
16
=
 
.(用a,b表示結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

建造一個容積為8m3,深為2m的長方體無蓋水池,如果池底和池壁的造價每平方米分別為120元和80元.
(Ⅰ)寫出建造水池的總造價y元關(guān)于底的一邊長x米的函數(shù)解析式y(tǒng)=f(x),并求定義域.
(Ⅱ)當(dāng)?shù)走呴L為多少米時總造價最低?最低總造價為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,半徑為R的半圓內(nèi)的陰影部分以直徑AB所在直線為軸,旋轉(zhuǎn)一周得到一幾何體,∠BAC=30°,則此幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)y=(a-1)x在R上單調(diào)遞增;命題q:當(dāng)1<x<3時,關(guān)于x的不等式x2-ax+4>0恒成立.若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)的綠化面積每年平均比上一年增長10%,設(shè)經(jīng)過x年后,綠化面積與原綠化面積之比為y,則y=f(x)得圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①23的立方根等于26的六次方根;
664
的運(yùn)算結(jié)果是±2;
③根式
366-x
在實數(shù)范圍內(nèi)是沒有意義的;
④根式
na
(n為正奇數(shù))與根式
mam
(m為正整數(shù))中,a的取值范圍都是全體實數(shù);
⑤不存在實數(shù)a,使得根式
a
+
4-a
在實數(shù)范圍內(nèi)有意義.
其中正確的個數(shù)有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性
(1)f(x)=|x+1|+|x-1|
(2)f(x)=
2x2+2x
x+1

(3)f(x)=
1-x2
+
x2-1

(4)f(x)=
1-x2
2-|x+2|

(5)f(x)=(x-1)
1+x
1-x

(6)f(x)=
x+3
0
-x+3
,
x<-1
|x|≤1
x>1

查看答案和解析>>

同步練習(xí)冊答案