5.如圖4,已知正三棱柱ABC-A1B1C1,延長BC至D,使C為BD的中點(diǎn).
(1)求證:平面AC1D⊥平面AA1B;
(2)若AC=2,AA1=4,求二面角C1-AD-B的余弦值.

分析 (1)推導(dǎo)出AB⊥AD,AA1⊥AD,從而AD⊥平面AA1B,由此能證明平面AC1D⊥平面AA1B.
(2)以A為原點(diǎn),AD為x軸,AB為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C1-AD-B的余弦值.

解答 解:(1)證明:由已知△ABC是正三角形,∠BAC=∠BCA=60°,
又∵AC=BC=CD,∴∠CAD=∠CDA=30°,…(1分)
∴∠BAD=30°+60°=90°,AB⊥AD,…(2分)
又∵AA1⊥底面ABD,∴AA1⊥AD,…(3分)
∵AB∩AA1=A,∴AD⊥平面AA1B,…(4分)
又∵AD?平面AC1D,∴平面AC1D⊥平面AA1B.…(5分)
解:(2)∵AA1⊥底面ABD,AB⊥AD,
∴如圖,以A為原點(diǎn),AD為x軸,AB為y軸,AA1為z軸,
建立空間直角坐標(biāo)系…(6分)
A(0,0,0),D(2$\sqrt{3}$,0,0),C1($\sqrt{3}$,1,4),…(7分)
$\overrightarrow{AD}$=(2$\sqrt{3}$,0,0),$\overrightarrow{A{C}_{1}}$=($\sqrt{3},1,4$),…(8分)
設(shè)平面ADC1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=2\sqrt{3}x=0}\\{\overrightarrow{n}•\overrightarrow{A{C}_{1}}=\sqrt{3}x+y+4z=0}\end{array}\right.$,取z=1,則$\overrightarrow{n}$=(0,-4,1),…(10分)
取平面ADB的法向量為$\overrightarrow{m}$=(0,0,1),
則cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{1}{\sqrt{17}}$=$\frac{\sqrt{17}}{17}$,
由圖知二面角C1-AD-B為銳角,
∴二面角C1-AD-B的余弦值為$\frac{\sqrt{17}}{17}$.…(12分)

點(diǎn)評(píng) 本題考查面面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知一條3m長的線段,從中任取一點(diǎn),使其到兩端的距離大于1m的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(1,3),B(6,-2),又點(diǎn)P(-2,1),點(diǎn)Q是邊AB上一點(diǎn),且$\overrightarrow{OQ}$•$\overrightarrow{AP}$=-10.
(1)求點(diǎn)Q的坐標(biāo);
(2)若R為線段OQ(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn),試求($\overrightarrow{RO}$+$\overrightarrow{RP}$)•($\overrightarrow{RA}$+$\overrightarrow{RB}$)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于函數(shù)f(x)=tan(cosx),下列結(jié)論中正確的是(  )
A.定義域是[-1,1]B.f(x)是奇函數(shù)
C.值域是[-tan1,tan1]D.在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.用反證法證明命題“若a2+b2=0,則a,b全為0 (a,b為實(shí)數(shù))”,其反設(shè)為a,b不全為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知在多面體SP-ABCD中,底面ABCD為矩形,AB=PC=1,AD=AS=2,且AS∥CP且AS⊥面ABCD,E為BC的中點(diǎn).
(1)求證:AE∥面SPD;
(2)求二面角B-PS-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知某幾何體如圖所示,若四邊形ADMN為矩形,四邊形ABCD為菱形,且∠DAB=60°,平面ADNM⊥平面ABCD,E為AB中點(diǎn),AD=2,AM=1.
(1)求證:AN∥平面MEC;
(2)在線段AM上是否存在點(diǎn)P,使二面角P-EC-D的大小為$\frac{π}{6}$?若存在,求出線段AP的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=ex-$\frac{1}{x}$+2的零點(diǎn)所在的一個(gè)區(qū)間是( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.垂直于x軸的直線與函數(shù)y=$\sqrt{x}$+$\frac{1}{x}$圖象的交點(diǎn)至多有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.無數(shù)個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案