用數(shù)學歸納法證明),在驗證當n=1時,等式左邊應為

A.1 B.1+a C.1+a+a2 D.1+a+a2+a3

D

解析試題分析:注意到的左端,表示直到共n+3項的和,所以,當n=1時,等式左邊應為1+a+a2+a3,選D。
考點:數(shù)學歸納法
點評:簡單題,應用數(shù)學歸納法證明問題,應遵循“兩步一結”。對于,n=1的情況,注意明確“項數(shù)”。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

下面使用類比推理正確的是(    )

A.“若,則”類推出“若,則
B.“若”類推出“
C.“若”類推出“)”
D.“” 類推出“

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

個正整數(shù)、、…、)任意排成列的數(shù)表.對于某一個數(shù)表,計算各行和各列中的任意兩個數(shù)、)的比值,稱這些比值中的最小值為這個數(shù)表的“特征值”.當時,數(shù)表的所有可能的“特征值”最大值為

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在平面上,我們?nèi)绻靡粭l直線去截正方形的一個角,那么截下的一個直角三角形,按圖所標邊長,由勾股定理有:c2=a2+b2。設想正方形換成正方體,把截線換成如下圖的截面,這時從正方體上截下三條側棱兩兩垂直的三棱錐OLMN,如果用S1,S2,S3表示三個側面面積,S4表示截面面積,那么你類比得到的結論是                   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

用反證法證明命題:“已知,若可被5整除,則中至少有一個能被5整除”時,反設正確的是(     )

A.都不能被5整除 B.都能被5整除 
C.中有一個不能被5整除  D.中有一個能被5整除 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

觀察下列各式:______;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在集合{a,b,c,d}上定義兩種運算⊕和?如下:

那么d?(a⊕c)等于(  )

A.a(chǎn) B.b C.c D.d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

有一段演繹推理是這樣的:“若直線平行于平面,則該直線平行于平面內(nèi)所有直線;已知直線b∥平面α,直線a?平面α,則直線b∥直線a”,結論顯然是錯誤的,這是因為(  )

A.大前提錯誤 B.小前提錯誤 
C.推理形式錯誤 D.非以上錯誤 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

推理“①矩形是平行四邊形;②正方形是矩形;③正方形是平行四邊形”中的小前提是(  )

A.①B.②
C.③D.以上均錯

查看答案和解析>>

同步練習冊答案