15.如圖,水平放置的三角形的直觀圖,A′C′∥y′軸,則原圖形中△ABC是(  )
A.銳角三角形B.鈍角三角形C.直角三角形D.任意三角形

分析 先根據(jù)斜二測畫法結(jié)合A′C′∥y′軸,由斜二測畫法得:原圖△ABC中:AC∥y軸,AB在x軸上,即可得出結(jié)論.

解答 解:由題意,直觀圖中A′C′∥y′軸,
由斜二測畫法得:原圖△ABC中:AC∥y軸,AB在x軸上,
則△ABC是直角三角形,
故選C.

點評 本題考查了平面圖形的直觀圖的畫法及其相關(guān)性質(zhì),把握好直觀圖與原圖形的關(guān)系,是個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,⊙O和⊙P相交于A,B兩點,過A作兩圓的切線分別交兩圓于C,D兩點,連接DB并延長交⊙O于點E.
(Ⅰ) 若BC=2,BD=4,求AB的長;
(Ⅱ) 若AC=3,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知隨機(jī)變量X服從正態(tài)分布X~N(2,σ2),P(X<4)=0.84,則P(X≤0)的值為0.16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C:(x+2)2+y2=4,相互垂直的兩條直線l1,l2都過點A(a,0),
(1)當(dāng)a=2時,若圓心為M(1,m)(m>0)的圓和圓C外切且與直線l1,l2都相切,求圓M的方程;
(2)當(dāng)a=-1時,記l1,l2被圓C所截得的弦長分別為d1,d2,求:
①d12+d22的值;
②d1+d2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號.已知從33~48這16個數(shù)中取的數(shù)是41,則在第1小組1~16中隨機(jī)抽到的數(shù)是(  )
A.5B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了做好“雙11”促銷活動,某電商打算將進(jìn)行促銷活動的禮品重新包裝,設(shè)計方案如下:將一塊邊長為20cm的正方形紙片ABCD剪去四個全等的等腰三角形△SEE′,△SFF′,△SGG′,△SHH′,再將剩下的陰影部分折成一個四棱錐形狀的禮品袋S-EFGH,其中A,B,C,D重合于點O,E與E′重合,F(xiàn)與F′重合,G與G′重合,H與H′重合(如圖所示),設(shè)AE=BE′=x(cm).
(1)求證:平面SEG⊥平面SFH;
(2)若電商要求禮品袋的側(cè)面積不少于128cm2,試求x的取值范圍;
(3)當(dāng)x=5時,該電商打算將禮品袋S-EFGH全部放入一個球形狀的包裝盒內(nèi)密封,求包裝盒的內(nèi)徑R的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)a>-38,P=$\sqrt{a+41}$-$\sqrt{a+40}$,Q=$\sqrt{a+39}$-$\sqrt{a+38}$,則P與Q的大小關(guān)系為P<Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是二次函數(shù),且f(0)=-1,f(x+1)=f(x)-2x+2,則f(x)的表達(dá)式為f(x)=-x2+3x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x、y滿足線性約束條件:$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最小值是( 。
A.6B.-6C.4D.-4

查看答案和解析>>

同步練習(xí)冊答案