已知數(shù)列的前項(xiàng)和為,數(shù)列滿(mǎn)足:。
(1)求數(shù)列的通項(xiàng)公式
(2)求數(shù)列的通項(xiàng)公式;(3)若,求數(shù)列的前項(xiàng)和.

(1);(2) ;(3) .

解析試題分析:(1)已知前項(xiàng)和公式,則.用此公式即可得通項(xiàng)公式
(2)根據(jù)遞推公式的特征,可用疊加法求;(3)由(1)(2)及題意得,
由等差數(shù)列與等比數(shù)列的積或商構(gòu)成的新數(shù)列,求和時(shí)用錯(cuò)位相消法.本題中要注意,首項(xiàng)要單獨(dú)考慮.
試題解析:(1),,       2分
當(dāng)時(shí),
           4分
(2)
以上各式相加得,
             8分
(3)由題意得,
當(dāng)時(shí),

兩式相減得,

,符合上式,      12分
考點(diǎn):等差數(shù)列與等比數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,Snaan的等差中項(xiàng).
(1)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)證明<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{an}的前n項(xiàng)和為Sn=2an-2,數(shù)列{bn}是首項(xiàng)為a1,公差不為零的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求證: <5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等差數(shù)列,且 
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Snan n-1=2(n∈N*),設(shè)cn=2nan.
(1)求證:數(shù)列{cn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)按以下規(guī)律構(gòu)造數(shù)列{bn},具體方法如下:
b1c1,b2c2c3,b3c4c5c6c7,…,第n項(xiàng)bn由相應(yīng)的{cn}中2n-1項(xiàng)的和組成,求數(shù)列{bn}的通項(xiàng)bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)都不相等的等差數(shù)列的前6項(xiàng)和為60,且的等比中項(xiàng).
(1) 求數(shù)列的通項(xiàng)公式;
(2) 若數(shù)列滿(mǎn)足,且,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為Snn∈N*,且a2=3,點(diǎn)(10,S10)在直線(xiàn)y=10x上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an+2n,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}滿(mǎn)足an+1=2an+n2-4n+1.
(1)若a1=3,求證:存在(a,b,c為常數(shù)),使數(shù)列{an+f(n)}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)若an是一個(gè)等差數(shù)列{bn}的前n項(xiàng)和,求首項(xiàng)a1的值與數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列,滿(mǎn)足,,且對(duì)任意的正整數(shù),均成等比數(shù)列.
(1)求的值;
(2)證明:均成等比數(shù)列;
(3)是否存在唯一正整數(shù),使得恒成立?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案