在△OAB所在平面內(nèi),點C為AB中點,且滿足CD⊥AB,設P是CD上任一點,設向量
OA
=
a
,
OB
=
b
,向量
OP
=
p
,若|
a
|=5
,|
b
|=3
,則
p
•(
a
-
b
)
=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:根據(jù)向量加法、減法運算,向量加法的平行四邊形法則,相互垂直的兩向量的數(shù)量積為0即可得到
p
•(
a
-
b
)=
1
2
(
a
2
-
b
2
)=8
解答: 解:如圖,

p
•(
a
-
b
)=
OP
BA
=(
OA
+
AC
+
CP
)•
BA
=
OC
BA
+
CP
BA
=
1
2
(
OA
+
OB
)•(
OA
-
OB
)
=
1
2
(
a
2
-
b
2
)=8

故答案為:8.
點評:考查向量加法、減法運算,向量加法的平行四邊形法則,相互垂直的兩向量數(shù)量積為0,以及數(shù)量積的運算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

隨機寫出兩個小于1的正數(shù)x與y,它們與數(shù)1一起形成一個三元數(shù)組(x,y,1).這樣的三元數(shù)組正好是
一個鈍角三角形的三邊的概率是( 。
A、
1
2
B、
π
4
C、
π-2
4
D、
π2-2
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+
2
cosα=
3
,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列有關命題的說法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、若p∨q為真命題,則p,q均為真命題
C、命題“存在x∈R,使得x2+x+1<0”的否定是:“對任意x∈R,均有x2+x+1<0”
D、命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)安排甲、乙等5名同學去參加3個運動項目,要求每個項目都有人參加,每人只參加一個項目,則滿足上述要求且甲、乙兩人不參加同一個項目的安排方法種數(shù)為( 。
A、114B、162
C、108D、132

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足條件
x-2y+4≥0
2-2x-y≤0
3x-y-3≤0
,則f(x,y)=x2+y2+2x+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是一條連續(xù)不斷地曲線,且有部分對應值如表所示,那么函數(shù)f(x)一定存在零點的區(qū)間是(  )
x123
f(x)-
3
2
-1
3
2
A、(-∞,1)
B、(1,2)
C、(2,3)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設單位向量
a
b
,
c
滿足:
a
b
=0,存在實數(shù)x,y使得
c
=x
a
+y
b
,則實數(shù)x+y的取值范圍是(  )
A、[-1,1]
B、[0,1]
C、[-
2
,
2
]
D、[0,
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2014年9月4日國務院新聞辦公室舉行《關于深化考試招生制度改革的實施意見》情況發(fā)布會,宣告新的高考制度改革正式拉開帷幕.該《實施意見》提出了“兩依據(jù)、一參考”,其中一個依據(jù)是高考成績,另一個依據(jù)是高中學業(yè)水平考試成績.強調(diào)了把高中學業(yè)水平考試作為考察學生學業(yè)完成情況的一個重要方式.近日,某調(diào)研機構在某地區(qū)對“在這種情況下學生的課業(yè)負擔是否會加重?”這一問題隨機選擇3600人進行問卷調(diào)查.調(diào)查結果統(tǒng)計如下:
不會不知道
在校學生2100120y
社會人士600xz
已知在全體被調(diào)查者中隨機抽取一人,抽到持“不會”意見的人的概率為0.05.
(Ⅰ) 求x和y+z的值;
(Ⅱ) 在持“不會”意見的被調(diào)查者中,用分層抽樣的方法抽取6個人,然后把他們隨機分成兩組,每組3人,進行深入交流,求第一組中社會人士人數(shù)ξ的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案