Processing math: 100%
1.設(shè)命題p:f(x)=x2+(2m-2)x+3在區(qū)間(-∞,0)上是減函數(shù);命題q:“不等式x2-4x+1-m≤0無解”.如果命題p∨q為真,命題p∧q為假,求實(shí)數(shù)m的取值范圍.

分析 如果命題p∨q為真,命題p∧q為假,則命題p,q一真一假,進(jìn)而可得實(shí)數(shù)m的取值范圍.

解答 解:f(x)=x2+(2m-2)x+3的圖象是開口朝上,且以直線x=1-m為對(duì)稱軸的拋物線,
若命題p:f(x)=x2+(2m-2)x+3在區(qū)間(-∞,0)上是減函數(shù)為真命題,
則1-m≥0,即m≤1;
命題q:“不等式x2-4x+1-m≤0無解”.
則△=16-4(1-m)<0,即m<-3,
如果命題p∨q為真,命題p∧q為假,則命題p,q一真一假,
若p真,q假,則-3≤m≤1,
若p假,q真,則不存在滿足條件的m值,
故-3≤m≤1.

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了二次函數(shù)的圖象和性質(zhì),復(fù)合命題,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)=x3-3x+1,x∈[-2,2]的最大值為M,最小值為m,則M+m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知m∈R,“方程ex+m-1=0有解”是“函數(shù)y=logmx在區(qū)間(0,+∞)為減函數(shù)”的( �。�
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“m>n>0”是方程mx2+ny2=1表示橢圓的( �。�
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,下列關(guān)于函數(shù)y=f(x)的極值和單調(diào)性的說法中,正確的個(gè)數(shù)是( �。�
①x2,x3,x4都是函數(shù)y=f(x)的極值點(diǎn);
②x3,x5都是函數(shù)y=f(x)的極值點(diǎn);
③函數(shù)y=f(x)在區(qū)間(x1,x3)上是單調(diào)的;
④函數(shù)y=f(x)在區(qū)間上(x3,x5)是單調(diào)的.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知P(0,-1)是橢圓C的下頂點(diǎn),F(xiàn)是橢圓C的右焦點(diǎn),直線PF與橢圓C的另一個(gè)交點(diǎn)為Q,滿足PF=7FQ
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,過左頂點(diǎn)A作斜率為k(k>0)的直線l1,l2,直線l1交橢圓C于點(diǎn)D,交y軸于點(diǎn)B.l2與橢圓C的一個(gè)交點(diǎn)為E,求|AD|+|AB||OE|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果實(shí)數(shù)x,y滿足(x-2)2+y2=2,則yx的范圍是( �。�
A.(-1,1)B.[-1,1]C.(-∞,-1)∪(1,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=12mx2-2x+ln(x+1)(m∈R).
(Ⅰ)判斷x=1能否為函數(shù)f(x)的極值點(diǎn),并說明理由;
(Ⅱ)若存在m∈[-4,-1),使得定義在[1,t]上的函數(shù)g(x)=f(x)-ln(x+1)+x3在x=1處取得最大值,求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是①②④(寫出所有正確命題的編號(hào)).
①當(dāng)0<CQ12時(shí),S為四邊形
②當(dāng)CQ=12時(shí),S為等腰梯形
③當(dāng)CQ=34時(shí),S與C1D1的交點(diǎn)R滿足C1R=23
④當(dāng)CQ=1時(shí),S的面積為62

查看答案和解析>>

同步練習(xí)冊(cè)答案