已知函數(shù)f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其導(dǎo)函數(shù)f′(x)的圖象過原點(diǎn).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在x=3處的切線方程;
(Ⅱ)若存在x<0,使得f′(x)=-9,求a的最大值;
(Ⅲ)當(dāng)a>0時(shí),求函數(shù)f(x)的零點(diǎn)個(gè)數(shù).
f(x)=
1
3
x3-
a+1
2
x2+bx+a
,f'(x)=x2-(a+1)x+b
由f'(0)=0得b=0,f'(x)=x(x-a-1).
(Ⅰ)當(dāng)a=1時(shí),f(x)=
1
3
x3-x2+1
,f'(x)=x(x-2),f(3)=1,f'(3)=3
所以函數(shù)f(x)的圖象在x=3處的切線方程為y-1=3(x-3),即3x-y-8=0;
(Ⅱ)存在x<0,使得f'(x)=x(x-a-1)=-9,-a-1=-x-
9
x
=(-x)+(-
9
x
)≥2
(-x)•(-
9
x
)=6
,a≤-7,
當(dāng)且僅當(dāng)x=-3時(shí),a=-7,所以a的最大值為-7;
(Ⅲ)當(dāng)a>0時(shí),x,f'(x),f(x)的變化情況如下表:

f(x)的極大值f(0)=a>0,
f(x)的極小值f(a+1)=a-
1
6
(a+1)3=-
1
6
[a3+3(a-
1
2
)
2
+
1
4
]<0

f(-2)=-a-
14
3
<0
,f(x)=
1
3
x2[x-
3
2
(a+1)]+a
,f(
3
2
(a+1))=a>0

所以函數(shù)f(x)在區(qū)間(-2,0),(0,a+1),(a+1,
3
2
(a+1))
內(nèi)各有一個(gè)零點(diǎn),
故函數(shù)f(x)共有三個(gè)零點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-3x,
(1)求函數(shù)f(x)在[-3,
3
2
]
上的最大值和最小值.
(2)求曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=lnx-
1
x
,過函數(shù)f(x)的圖象上一點(diǎn)P的切線l與直線y=2x-3平行,則點(diǎn)P的坐標(biāo)為(  )
A.(1,-1)B.(2,ln2-
1
2
C.(3,ln3-
1
3
D.(4,ln4-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點(diǎn)P是曲線y=x2-lnx上一點(diǎn),且在點(diǎn)P處的切線與直線y=x-2平行,則點(diǎn)P的橫坐標(biāo)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)y1=sin(2x1)+
1
2
(x1∈[0,π]),函數(shù)y2=x2+3,則(x1-x22+(y1-y22的最小值為( 。
A.
2
12
π+
5
2
-
6
4
B.
2
12
π
C.(
5
2
-
6
4
2
D.
(π-3
3
+15)
2
72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
2
ax2
+2lnx,曲線y=f(x)在x=1處的切線斜率為4.
(1)求a的值及切線方程;
(2)點(diǎn)P(x,y)為曲線y=f′(x)上一點(diǎn),求y-x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=xlnx
(1)求這個(gè)函數(shù)的導(dǎo)數(shù);
(2)求這個(gè)函數(shù)的圖象在點(diǎn)x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖為函數(shù)f(x)=
x
(0<x<1)的圖象,其在點(diǎn)M(t,f(t))處的切線為l,l與y軸和直線y=1分別交于點(diǎn)P、Q,點(diǎn)N(0,1),若△PQN的面積為b時(shí)的點(diǎn)M恰好有兩個(gè),則b的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x3+ax2-4,(a∈R)
(Ⅰ)若y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線的傾斜角為
π
4
,求a;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)是f′(x),在(Ⅰ)的條件下,若m,n∈[-1,1],求f(m)+f′(n)的最小值.
(Ⅲ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案