設,在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且(O為坐標原點),并求出該圓的方程;
(3)已知,設直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.
(1)當m=0時,方程表示兩直線,方程為;當時, 方程表示的是圓,當且時,方程表示的是橢圓;(2)存在圓滿足要求(3) 當時|A1B1|取得最大值,最大值為1.
解析試題分析:(1)因為,,,
所以, 即.
當m=0時,方程表示兩直線,方程為;
當時, 方程表示的是圓
當且時,方程表示的是橢圓;
(2).當時, 軌跡E的方程為,設圓心在原點的圓的一條切線為,解方程組得,即,
要使切線與軌跡E恒有兩個交點A,B,
則使△=,
即,即, 且
,
要使, 需使,即,
所以, 即且, 即恒成立.
所以又因為直線為圓心在原點的圓的一條切線,
所以圓的半徑為,, 所求的圓為.
當切線的斜率不存在時,切線為,與交于點或也滿足.
綜上, 存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.
(3)當時,軌跡E的方程為,設直線的方程為,因為直線與圓C:(1<R<2)相切于A1, 由(2)知, 即 ①,
因為與軌跡E只有一個公共點B1,
由(2)知得,
即有唯一解
則△=, 即, ②
由①②得, 此時A,B重合為B1(x1,y1)點,
由 中,所以,,
B1(x1,y1)點在橢圓上,所以,所以,
在直角三角形OA1B1中,因為當且僅當時取等號,所以,即
當時|A1B1|取得最大值,最大值為1.
考點:求軌跡方程及直線與橢圓,圓的位置關系
點評:中取不同值時代表不同的曲線,可一是直線,圓,橢圓,雙曲線;
直線與橢圓相交問題常用的思路:直線方程與橢圓方程聯(lián)立,整理為x的二次方程,利用根與系數(shù)的關系,將所求問題轉化到兩根來表示,本題第二問第三問對學生而言難度較大
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的左右焦點分別為、,由4個點、、和組成一個高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過點的直線和橢圓交于、兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,
軸被拋物線截得的線段長等于的長半軸長.
(1)求的方程;
(2)設與軸的交點為,過坐標原點的直線
與相交于兩點,直線分別與相交于.
①證明:為定值;
②記的面積為,試把表示成的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在坐標原點,兩個焦點分別為,,點在橢圓 上,過點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且與交于點.
(1) 求橢圓的方程;
(2) 是否存在滿足的點? 若存在,指出這樣的點有幾個(不必求出點的坐標); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的方程為左、右焦點分別為F1、F2,焦距為4,點M是橢圓C上一點,滿足
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(0,2)分別作直線PA,PB交橢圓C于A,B兩點,設直線PA,PB的斜率分別為k1,k2,,求證:直線AB過定點,并求出直線AB的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點是F拋物線與橢圓的公共焦點,且橢圓的離心率為
(1)求橢圓的方程;
(2)過拋物線上一點P,作拋物線的切線,切點P在第一象限,如圖,設切線與橢圓相交于不同的兩點A、B,記直線OP,F(xiàn)A,FB的斜率分別為(其中為坐標原點),若,求點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,點B是軸上的動點,過B作AB的垂線交軸于點Q,若
,.
(1)求點P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上 ,且滿足,.
(Ⅰ)當點P在y軸上移動時,求點M的軌跡C的方程;
(Ⅱ)設為軌跡C上兩點,且,N(1,0),求實數(shù),使,且.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com