分析 寫出矩陣的特征多項式,利用特征值求出a,再回代到方程f(λ)=0即可解出另一個特征值為λ=4.最后利用求特征向量的一般步驟,可求出其對應(yīng)的一個特征向量.
解答 解:矩陣的特征多項式是f(λ)=(λ-2)(λ-1)-2a,
由f(-1)=0得a=3,即f(λ)=λ2-3λ-4,
令f(λ)=0,則λ=-1或λ=4,
解方程組$\left\{\begin{array}{l}{(λ-2)x-3y=0}\\{-2λ+(λ+1)y=0}\end{array}\right.$,可得2x-3y=0,
所以矩陣A的另一個特征值是4,屬于4的一個特征向量是$[\begin{array}{l}{3}\\{2}\end{array}]$.
點評 本題給出含有字母參數(shù)的矩陣,在知其一個特征值的情況下求另一個特征值和相應(yīng)的特征向量,考查了特征值與特征向量的計算的知識,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{3+2\sqrt{2}}}{4}$ | C. | $\frac{{3+\sqrt{2}}}{4}$ | D. | $\frac{{3-\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
傾向“平面幾何選講” | 傾向“坐標系與參數(shù)方程” | 傾向“不等式選講” | 合計 | |
男生 | 16 | 4 | 6 | 26 |
女生 | 4 | 8 | 12 | 24 |
合計 | 20 | 12 | 18 | 50 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com