分析 (1)f′(x)=$\frac{{x}^{2}-ax+a}{x}$且f′(x)=0有兩個不同的正根,即x2-ax+a=0兩個不同的正根,即可求實數(shù)a的取值范圍;
(2)利用韋達定理,可得$\frac{f({x}_{1})+f({x}_{2})}{{x}_{1}+{x}_{2}}$=lna-$\frac{1}{2}$a-1,構(gòu)造函數(shù),確定函數(shù)的單調(diào)性,求出其范圍,即可求λ的最小值.
解答 解:(1)由題設(shè)知,函數(shù)f(x)的定義域為(0,+∞),
f′(x)=$\frac{{x}^{2}-ax+a}{x}$且f′(x)=0有兩個不同的正根,即x2-ax+a=0兩個不同的正根x1,x2,(x1<x2)
則$\left\{\begin{array}{l}{△={a}^{2}-4a>0}\\{a>0}\\{a>0}\end{array}\right.$,∴a>4,
(0,x1),f′(x)>0,(x1,x2),f′(x)<0,(x2,+∞),f′(x)>0,
∴x1,x2是f(x)的兩個極值點,符合題意,
∴a>4;
(2)f(x1)+f(x2)=alnx1+$\frac{1}{2}$x12-ax1+alnx2+$\frac{1}{2}$x22-ax2=a(lna-$\frac{1}{2}$a-1),
∴$\frac{f({x}_{1})+f({x}_{2})}{{x}_{1}+{x}_{2}}$=lna-$\frac{1}{2}$a-1,
令y=lna-$\frac{1}{2}$a-1,則y′=$\frac{1}{a}$-$\frac{1}{2}$,
∵a>4,
∴y′<0,
∴y=lna-$\frac{1}{2}$a-1在(4,+∞)上單調(diào)遞減,
∴y<ln4-3,
∵不等式f(x1)+f(x2)<λ(x1+x2)恒成立,x1+x2>0,
∴是λ的最小值ln4-3.
點評 本題考查導(dǎo)數(shù)知識的綜合運用,考查函數(shù)的極值,考查不等式恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{25}{2}$ | B. | $\frac{49}{2}$ | C. | 12 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0)∪(1,+∞) | B. | (-∞,-1)∪(e,+∞) | C. | (-e,0)∪(e,+∞) | D. | (-∞,-e)∪(0,e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{8}{3}$ | C. | $\frac{9}{4}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com