19.如圖直三棱柱ABC-A'B'C'中,△ABC為邊長為2的等邊三角形,AA'=4,點(diǎn)E、F、G、H、M分別是邊AA'、AB、BB'、A'B'、BC的中點(diǎn),動點(diǎn)P在四邊形EFGH內(nèi)部運(yùn)動,并且始終有MP∥平面ACC'A',則動點(diǎn)P的軌跡長度為( 。
A.2B.C.$2\sqrt{3}$D.4

分析 利用平面與平面平行,推出直線與平面平行,得到P的軌跡,然后求解動點(diǎn)P的軌跡長度.

解答 解:連結(jié)HF,F(xiàn)M,HM,因?yàn)橹比庵鵄BC-A'B'C'中,點(diǎn)E、F、G、H、M分別是邊AA'、AB、BB'、A'B'、BC的中點(diǎn),可知HF∥AA′,F(xiàn)M∥AC,HF∩FM=F,可知平面HFM∥平面ACC'A',P∈有平面HFM,
所以有MP∥平面ACC'A',可得P的軌跡是線段HF,HF=4.
故選:D.

點(diǎn)評 本題考查空間幾何體的特征,平面與平面平行的判定定理以及性質(zhì)定理的應(yīng)用,軌跡的判斷,考查計(jì)算能力空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,直線l的極坐標(biāo)方程為2ρcosθ+ρsinθ-2=0.
(1)寫出C的參數(shù)方程和直線l的直角坐標(biāo)方程.
(2)設(shè)直線l與曲線C的交點(diǎn)為P1,P2,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知圓${x^2}+{y^2}+mx-\frac{1}{4}=0$與拋物線$y=\frac{1}{4}{x^2}$的準(zhǔn)線相切,則m=( 。
A.$±2\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將三個(gè)標(biāo)有A,B,C的小球隨機(jī)放入編號為1,2,3,4的四個(gè)盒子中,則1號盒子內(nèi)沒有球的不同放法的總數(shù)為(  )
A.27B.37C.64D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{1}{2}x-\frac{1}{2}$,若對于數(shù)列{an}滿足:an+1=4f(an)-an-1+4(n∈N*,n≥2),且a1=-1,a2=2.
(1)求證:數(shù)列{an-an-1}(n∈N*,n≥2)為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{{{a_n}+2}}{n}×{3^{n-1}}$,若數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題p:?x0∈R,lnx0≥x0-1.命題q:?θ∈R,sinθ+cosθ<1,.則下列命題中為真命題的是( 。
A.p∧qB.(¬p)∧qC.(¬p)∧(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.直線l1:y=kx-1與直線l2:x+y-1=0的交點(diǎn)位于第一象限則k的范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某計(jì)算器有兩個(gè)數(shù)據(jù)輸入口M1,M2一個(gè)數(shù)據(jù)輸出口N,當(dāng)M1,M2分別輸入正整數(shù)1時(shí),輸出口N輸出2,當(dāng)M1輸入正整數(shù)m1,M2輸入正整數(shù)m2時(shí),N的輸出是n;當(dāng)M1輸入正整數(shù)m1,M2輸入正整數(shù)m2+1時(shí),N的輸出是n+5;當(dāng)M1輸入正整數(shù)m1+1,MM2輸入正整數(shù)m2時(shí),N的輸出是n+4.則當(dāng)M1輸入60,M2輸入50時(shí),N的輸出是(  )
A.494B.492C.485D.483

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=sin(ωx+2φ)-2sinφcos(ωx+φ)(ω>0,φ∈R)在(π,$\frac{3π}{2}$)上單調(diào)遞減,則ω的取值范圍是( 。
A.(0,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,1]D.[$\frac{1}{2}$,$\frac{5}{4}$]

查看答案和解析>>

同步練習(xí)冊答案