14.已知函數(shù)$f(x)=\frac{1}{2}x-\frac{1}{2}$,若對(duì)于數(shù)列{an}滿(mǎn)足:an+1=4f(an)-an-1+4(n∈N*,n≥2),且a1=-1,a2=2.
(1)求證:數(shù)列{an-an-1}(n∈N*,n≥2)為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{{{a_n}+2}}{n}×{3^{n-1}}$,若數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

分析 (1)由已知$f(x)=\frac{1}{2}x-\frac{1}{2}$及an+1=4f(an)-an-1+4,可得(an+1-an)-(an-an-1)=2(n≥2),求出a2-a1=3,可得數(shù)列{an+1-an}是一個(gè)以3為首項(xiàng),以2為公差的等差數(shù)列;再由等差數(shù)列的通項(xiàng)公式可得an+1-an=2n+1,然后利用累加法求得數(shù)列{an}的通項(xiàng)公式;
(2)把(1)中求得的通項(xiàng)公式代入${b_n}=\frac{{{a_n}+2}}{n}×{3^{n-1}}$,然后利用錯(cuò)位相減法求Sn

解答 (1)證明:由題意,${a_{n+1}}=4f({a_n})-{a_{n-1}}+4=4(\frac{1}{2}{a_n}-\frac{1}{2})-{a_{n-1}}+4=2{a_n}-{a_{n-1}}+2(n≥2)$,
即(an+1-an)-(an-an-1)=2(n≥2),
∵a1=-1,a2=2,∴a2-a1=3,
∴數(shù)列{an+1-an}是一個(gè)以3為首項(xiàng),以2為公差的等差數(shù)列;
則an+1-an=3+2(n-1)=2n+1,
則a2-a1=2×1+1,a3-a2=2×2+1,…,an-an-1=2(n-1)+1(n≥2).
累加得${a_n}={a_1}+2[1+2+…+(n-1)]+(n-1)={n^2}-2$.
驗(yàn)證n=1時(shí)上式成立,∴${a_n}={n^2}-2$;
(2)解:${b_n}=\frac{{{a_n}+2}}{n}=\frac{{{n^2}-2+2}}{n}×{3^{n-1}}=n×{3^{n-1}}$,
則${S_n}={b_1}+{b_2}+…+{b_n}=1×{3^0}+2×{3^1}+3×{3^2}+…+n×{3^{n-1}}$,
$3{S_n}=1×{3^1}+2×{3^2}+3×{3^3}+…+n×{3^n}$,
兩式作差得:$-2{S_n}=1×{3^0}+1×{3^1}+1×{3^2}+…+1×{3^{n-1}}-n×{3^n}=\frac{{1-{3^n}}}{1-3}-n×{3^n}=\frac{{1-{3^n}}}{-2}-n×{3^n}$.
∴${S_n}=\frac{{1-{3^n}}}{4}+\frac{n}{2}×{3^n}=\frac{{(2n-1)×{3^n}+1}}{4}$.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查等差關(guān)系的確定,訓(xùn)練了錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則函數(shù)y=f[f(x)]-1的零點(diǎn)個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.記集合A={x|x+2>0},B={y|y=cosx,x∈R}則A∪B=( 。
A.[-1.1]B.(-2,1]C.(-2,+∞)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若圓x2+y2-2x-2y=0上至少有三個(gè)不同點(diǎn)到直線l:y=kx的距離為$\frac{{\sqrt{2}}}{2}$,則直線l的傾斜角的取值范圍是( 。
A.[15°,45°]B.[15°,75°]C.[30°,60°]D.[0°,90°]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)集合P={1,2,3,4},Q={x|x≤2},則P∩Q={1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖直三棱柱ABC-A'B'C'中,△ABC為邊長(zhǎng)為2的等邊三角形,AA'=4,點(diǎn)E、F、G、H、M分別是邊AA'、AB、BB'、A'B'、BC的中點(diǎn),動(dòng)點(diǎn)P在四邊形EFGH內(nèi)部運(yùn)動(dòng),并且始終有MP∥平面ACC'A',則動(dòng)點(diǎn)P的軌跡長(zhǎng)度為( 。
A.2B.C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知球的直徑PC=4,A,B在球面上,∠CPA=∠CPB=45°,AB=2,則棱錐P-ABC的體積為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知圓C:(x+1)2+(y-2)2=4,則其圓心和半徑分別為( 。
A.(1,2),4B.(1,-2),2C.(-1,2),2D.(1,-2),4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在一次期末數(shù)學(xué)測(cè)試中,唐老師任教班級(jí)學(xué)生的考試得分情況如表所示:
分?jǐn)?shù)區(qū)間[50,70][70,90][90,110][110,130][130,150]
人數(shù)28323820
(1)根據(jù)上述表格,試估計(jì)唐老師所任教班級(jí)的學(xué)生在本次期末數(shù)學(xué)測(cè)試的平均成績(jī);
(2)現(xiàn)從成績(jī)?cè)赱70,110)中按照分?jǐn)?shù)段,采取分成抽樣的方法隨機(jī)抽取5人,再在這5人中隨機(jī)抽取2人作小題得分分析,求恰有1人的成績(jī)?cè)赱70,90)上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案