【題目】已知點P(2,2),圓,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標(biāo)原點.
(1)求點M的軌跡方程;
(2)當(dāng)|OP|=|OM|時,求l的方程及△POM的面積.
【答案】(1) ;(2)直線的方程為,的面積為.
【解析】
求得圓的圓心和半徑.
(1)當(dāng)三點均不重合時,根據(jù)圓的幾何性質(zhì)可知,是定點,所以的軌跡是以為直徑的圓(除兩點),根據(jù)圓的圓心和半徑求得的軌跡方程.當(dāng)三點有重合的情形時,的坐標(biāo)滿足上述求得的的軌跡方程.綜上可得的軌跡方程.
(2)根據(jù)圓的幾何性質(zhì)(垂徑定理),求得直線的斜率,進而求得直線的方程.根據(jù)等腰三角形的幾何性質(zhì)求得的面積.
圓,故圓心為,半徑為.
(1)當(dāng)C,M,P三點均不重合時,∠CMP=90°,所以點M的軌跡是以線段PC為直徑的圓(除去點P,C),線段中點為,,故的軌跡方程為(x-1)2+(y-3)2=2(x≠2,且y≠2或x≠0,且y≠4).
當(dāng)C,M,P三點中有重合的情形時,易求得點M的坐標(biāo)為(2,2)或(0,4).
綜上可知,點M的軌跡是一個圓,軌跡方程為(x-1)2+(y-3)2=2.
(2)由(1)可知點M的軌跡是以點N(1,3)為圓心,為半徑的圓.
由于|OP|=|OM|,故O在線段PM的垂直平分線上.又P在圓N上,從而ON⊥PM.因為ON的斜率為3,所以的斜率為,故的方程為,即.
又易得|OM|=|OP|=,點O到的距離為,,
所以△POM的面積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(ax2-2x)ex,其中a≥0.
(1)當(dāng)a=時,求f(x)的極值點;
(2)若f(x)在[-1,1]上為單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,兩個少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學(xué)進行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(1)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;
(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學(xué)中隨機抽取3人,求被抽到班同學(xué)人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求f(x)的最小值;
(2)若關(guān)于x的不等式在(1,+∞)上恒成立,求整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸端點為,,點是橢圓上的動點,且不與,重合,點滿足,.
(Ⅰ)求動點的軌跡方程;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲,乙兩個車間生產(chǎn)同一種產(chǎn)品,甲車間有工人人,乙車間有工人人,為比較兩個車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產(chǎn)完成的一件產(chǎn)品的事件(單位:)進行統(tǒng)計,按照進行分組,得到下列統(tǒng)計圖.
分別估算兩個車間工人中,生產(chǎn)一件產(chǎn)品時間少于的人數(shù);
分別估計兩個車間工人生產(chǎn)一件產(chǎn)品時間的平均值,并推測車哪個車間工人的生產(chǎn)效率更高?
從第一組生產(chǎn)時間少于的工人中隨機抽取人,求抽取人中,至少人生產(chǎn)時間少于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱中,,:
(1)求證:平面;
(2)現(xiàn)將與四棱柱形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式;(直接寫出答案,不必說明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,A為圓O1上任意一點,點D在線段上.,已知,.
(1)求點D的軌跡方程H;
(2)若直線與方程H所表示的圖像交于E,F兩點,是橢圓上任意一點.若OG平分弦EF,且,,試判斷四邊形OEGF形狀并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com