分析 運用乘1法,可得$\frac{1}{x}$+$\frac{4}{y}$=$\frac{1}{4}$(x+y)($\frac{1}{x}$+$\frac{4}{y}$)=$\frac{1}{4}$(5+$\frac{y}{x}$+$\frac{4x}{y}$),由基本不等式可得最小值,進而得到m的范圍和相應x,y的值.
解答 解:x>0,y>0,且x+y=4,可得
$\frac{1}{x}$+$\frac{4}{y}$=$\frac{1}{4}$(x+y)($\frac{1}{x}$+$\frac{4}{y}$)=$\frac{1}{4}$(5+$\frac{y}{x}$+$\frac{4x}{y}$)≥$\frac{1}{4}$(5+2$\sqrt{\frac{y}{x}•\frac{4x}{y}}$)=$\frac{9}{4}$,
當且僅當y=2x=$\frac{8}{3}$,$\frac{1}{x}$+$\frac{4}{y}$取得最小值$\frac{9}{4}$,
由不等式$\frac{1}{x}$+$\frac{4}{y}$≥m恒成立,可得m≤$\frac{9}{4}$.
故答案為:(-∞,$\frac{9}{4}$],$\frac{4}{3}$,$\frac{8}{3}$.
點評 本題考查不等式恒成立問題的解法,注意轉(zhuǎn)化為求最值問題,注意運用乘1法和基本不等式,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{3}$-y2=1 | B. | $\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{4}$=1 | C. | x2-$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com