9.已知五邊形ABCDE是由直角梯形ABCD和等腰直角三角形ADE構(gòu)成,如圖所示,AB⊥AD,AE⊥DE,AB∥CD,且AB=2CD=2DE=4,將五邊形ABCDE沿著AD折起,且使平面ABCD⊥平面ADE.
(Ⅰ)若M為DE中點(diǎn),邊BC上是否存在一點(diǎn)N,使得MN∥平面ABE?若存在,求$\frac{BN}{BC}$的值;若不存在,說(shuō)明理由;
(Ⅱ)求二面角A-BE-C的平面角的余弦值.

分析 (1)取BC中點(diǎn)為N,AD中點(diǎn)為P,連接MN,NP,MP,可得面MNP∥面ABE,即邊AB上存在這樣的點(diǎn)N,且$\frac{BN}{BC}=\frac{1}{2}$,使得MN∥平面ABE.
(2)以A為原點(diǎn),以AD為y軸,以AB為z軸建立空間直角坐標(biāo)系.則A(0,0,0),B(0,0,4),$C({0,2\sqrt{2},2})$,$D({0,2\sqrt{2},0})$,$E({\sqrt{2},\sqrt{2},0})$.利用向量法求解.

解答 解:(1)證明:取BC中點(diǎn)為N,AD中點(diǎn)為P,
連接MN,NP,MP.∵AE∥PM,AE⊆面ABE,MP?面ABE∴PM∥面ABE,
同理PN∥面ABE,又MP∩NP=P∴面MNP∥面ABE.
∴邊AB上存在這樣的點(diǎn)N,且$\frac{BN}{BC}=\frac{1}{2}$,使得MN∥平面ABE.
(2)以A為原點(diǎn),以AD為y軸,以AB為z軸建立空間直角坐標(biāo)系.
則A(0,0,0),B(0,0,4),$C({0,2\sqrt{2},2})$,$D({0,2\sqrt{2},0})$,$E({\sqrt{2},\sqrt{2},0})$.
∵DE⊥AE,DE⊥AB∴DE⊥面ABE∴面ABE的一個(gè)法向量為$\overrightarrow{DE}=({\sqrt{2},-\sqrt{2},0})$
設(shè)面BCE的一個(gè)法向量為$\overrightarrow n=({x,y,z})$∵$\overrightarrow{BC}=({0,2\sqrt{2},-2})$,$\overrightarrow{BE}=({\sqrt{2},\sqrt{2},-4})$.
∴$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{BC}=2\sqrt{2}y-2z=0\\ \overrightarrow n•\overrightarrow{BE}=\sqrt{2}x+\sqrt{2}y-4z=0\end{array}\right.$令y=1,則x=3,$z=\sqrt{2}$∵$\overrightarrow n=({3,1,\sqrt{2}})$.
∴$cos\left?{\overrightarrow{DE},\overrightarrow n}\right>=\frac{{\overrightarrow{DE}•\overrightarrow n}}{{|{\overrightarrow{DE}}||{\overrightarrow n}|}}$=$\frac{{2\sqrt{2}}}{{2×2\sqrt{3}}}=\frac{{\sqrt{6}}}{6}$.
∴二面角A-BE-C的平面角的余弦值為$-\frac{{\sqrt{6}}}{6}$.

點(diǎn)評(píng) 本題考查了空間線面平行的判定,存在性問(wèn)題,向量法求二面角,屬于中檔題,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某餐廳裝修,需要大塊膠合板20張,小塊膠合板50張.已知市場(chǎng)出售A、B兩種不同規(guī)格的膠合板,經(jīng)過(guò)測(cè)算,A種規(guī)格的膠合板可同時(shí)裁得大塊膠合板2張,小塊膠合板6張,B種規(guī)格的膠合板可同時(shí)裁得大塊膠合板1張,小塊膠合板2張.已知A種規(guī)格膠合板每張200元,B種規(guī)格膠合板每張72元,分別用x,y表示購(gòu)買(mǎi)A、B兩種不同規(guī)格膠合板的張數(shù).
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(Ⅱ)根據(jù)施工需求,A,B兩種不同規(guī)格的膠合板各買(mǎi)多少?gòu)埢ㄙM(fèi)資金最少?并求出最少資金數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2log3(3-x)-log3(1+x).
(1)求f(x)的定義域;
(2)當(dāng)0≤x≤2時(shí),求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知直線l:y=kx+$\sqrt{3}$與y軸的交點(diǎn)是橢圓C:x2+$\frac{y^2}{m}=1({m>0})$的一個(gè)焦點(diǎn).
(1)求橢圓C的方程;
(2)若直線l與橢圓C交于A、B兩點(diǎn),是否存在k使得以線段AB為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=2$,且$\overrightarrow a•\overrightarrow b=1$.若$\overrightarrow e$為平面單位向量,$({\overrightarrow a+\overrightarrow b})•\overrightarrow e$的最大值為( 。
A.$\sqrt{6}$B.6C.$\sqrt{7}$D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知cos($\frac{π}{4}-\frac{θ}{2}$)=$\frac{2}{3}$,則sinθ=( 。
A.$\frac{7}{9}$B.$\frac{1}{9}$C.-$\frac{1}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若集合M={y∈N|y<6},N={x|log2(x-1)≤2},則M∩N=(  )
A.(1,5]B.(-∞,5]C.{1,2,3,4,5}D.{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若(1+$\sqrt{3}$)5=a+b$\sqrt{3}$(a,b為有理數(shù)),則b=44.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB、BB1的中點(diǎn),AB=BC.
(1)證明:BC1∥平面A1CD;
(2)平面A1EC⊥平面ACC1A1

查看答案和解析>>

同步練習(xí)冊(cè)答案