9.若函數(shù)f(x)=lg(x2-2mx+3m)在[1,+∞)上是增函數(shù),則m的取值范圍為(-1,1].

分析 令u(x)=x2-2mx+3m,由復(fù)合函數(shù)的單調(diào)性可得函數(shù)u(x)在區(qū)間[1,+∞)上單調(diào)遞增且恒為正實數(shù),再解不等式組即可.

解答 解:記u(x)=x2-2mx+3m,則f(x)=lgu(x),顯然,
u(x)在(-∞,m)上單調(diào)遞減,在(m,+∞)上單調(diào)遞增,
再由復(fù)合函數(shù)的單調(diào)性可得,
函數(shù)u(x)在區(qū)間[1,+∞)上單調(diào)遞增且恒為正實數(shù),
則$\left\{\begin{array}{l}{m≤1}\\{1-2m+3m>0}\end{array}\right.$,解得-1<m≤1,
故答案為:(-1,1].

點評 本題主要考查了復(fù)合函數(shù)單調(diào)性性的應(yīng)用,二次函數(shù)的圖象和性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a=${log_{\frac{1}{3}}}$2,b=${log_{\frac{1}{2}}}\frac{1}{3}$,c=${(\frac{1}{2})^{0.3}}$,則( 。
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知如表為“五點法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時的五個關(guān)鍵點的坐標(biāo)(其中A>0,ω>0,|φ|<π).
x$-\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ) 請寫出函數(shù)f(x)的解析式,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ) 求函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.過x軸下方的一動點P作拋物線C:x2=2y的兩切線,切點分別為A,B,若直線AB到圓x2+y2=1相切,則點P的軌跡方程為( 。
A.y2-x2=1(y<0)B.(y+2)2+x2=1C.${x^2}+\frac{y^2}{4}=1(y<0)$D.x2=-y-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項和Tn
(1)求數(shù)列{an}的通項公式;
(2)求Tn;
(3)求滿足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})>\frac{1011}{2014}$的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若A、B是兩個集合,則下列命題中真命題是( 。
A.如果A⊆B,那么A∩B=AB.如果A∩B=A,那么(∁UA)∩B=∅
C.如果A⊆B,那么A∪B=AD.如果A∪B=A,那么A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知sinα=2sinβ,tanα=3tanβ,則cos2α=$-\frac{1}{4}$或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知角β的終邊在直線y=-x上.
(1)寫出角β的集合S;
(2)寫出S中適合不等式-360°<β<360°的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是( 。
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.在△ABC中,“A>B”是“sinA>sinB”必要不充分條件
C.“若tanα≠$\sqrt{3}$,則α≠$\frac{π}{3}$”是真命題
D.?x0∈(-∞,0)使得3x0<4x0成立

查看答案和解析>>

同步練習(xí)冊答案