16.已知定義在R上的奇函數(shù)f(x)滿足f(x)=f(x+4)且f(3)=0,則方程f(x)=0在區(qū)間(0,10)內(nèi)整數(shù)根有( 。
A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)

分析 由已知函數(shù)為奇函數(shù),求出函數(shù)的周期為4可得f(0)=0⇒f(4)=f(8)=0,由f(3)=0⇒(7)=0,又f(-3)=0⇒f(1)=f(5)=f(9)=0,從而可得結(jié)果.

解答 解:由已知可知f(3)=0,
因?yàn)閒(x)是R上的奇函數(shù),所以f(-3)=-f(3)=0,f(0)=0,
又因?yàn)楹瘮?shù)的周期為4,即f(x+4)=f(x),
所以f(0)=f(4)=f(8)=0,f(3)=f(7)=0,f(-3)=f(1)=f(5)=f(9)=0,
所以方程f(x)=0在x∈(0,10)的根有 1,3,4,5,7,8,9,共7個(gè).
故選:D.

點(diǎn)評(píng) 本題主要考查了函數(shù)的奇偶性、函數(shù)的單調(diào)性及函數(shù)周期的綜合運(yùn)用,解決本題的關(guān)鍵是熟練掌握函數(shù)的各個(gè)性質(zhì)并能靈活運(yùn)用性質(zhì),還要具備一定的綜合論證的解題能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)=$\left\{\begin{array}{l}{ln(1-x),x<0}\\{{x}^{2}-ax,x≥0}\end{array}\right.$,且g(x)=f(x)+$\frac{x}{2}$有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.高三年級(jí)有500名學(xué)生,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生在一次測(cè)試中的數(shù)學(xué)成績(jī),制成如下頻率分布表:
分組頻數(shù)頻率
[85,95)
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合計(jì)
(1)表格中①②③④處的數(shù)值分別為1、0.025、0.100、1.000;
(2)在圖中畫(huà)出[85,155]的頻率分布直方圖;
(3)根據(jù)題干信息估計(jì)總體平均數(shù),并估計(jì)總體落在[125,155]上的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.定義在R上的函數(shù)y=f(x)滿足:f(x)+f'(x)>1,f(0)=2018,則不等式exf(x)-ex>2017(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(2017,+∞)B.(-∞,0)∪(2017,+∞)C.(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=ln(1+x)-\frac{x}{{{{(1+x)}^a}}}$,實(shí)數(shù)a>0.
(Ⅰ)若a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x>0時(shí),不等式f(x)<0恒成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體最長(zhǎng)的棱長(zhǎng)度為( 。
A.$2\sqrt{2}$B.$\sqrt{5}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC中,A=60°,AC=2,記BC=a,若△ABC是唯一確定的銳角三角形,則a的取值范圍是[2,2$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(Ⅰ)計(jì)算由直線y=x-4,曲線y=$\sqrt{2x}$以及x軸所圍圖形的面積S.
(Ⅱ)試判斷$\sqrt{6}$+$\sqrt{7}$和2$\sqrt{2}$+$\sqrt{5}$的大小,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.復(fù)數(shù)z1=(m2-2m+3)+(m2-m+2)i(m∈R),z2=6+8i,則m=3是z1=z2的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案