【題目】已知函數(shù)f(x)=2x2﹣3x+1, ,(A≠0)
(1)當(dāng)0≤x≤ 時(shí),求y=f(sinx)的最大值;
(2)若對(duì)任意的x1∈[0,3],總存在x2∈[0,3],使f(x1)=g(x2)成立,求實(shí)數(shù)A的取值范圍;
(3)問(wèn)a取何值時(shí),方程f(sinx)=a﹣sinx在[0,2π)上有兩解?

【答案】
(1)解:y=f(sinx)=2sin2x﹣3sinx+1設(shè)t=sinx,x ,則0≤t≤1

∴當(dāng)t=0時(shí),ymax=1


(2)解:當(dāng)x1∈[0,3]∴f(x1)值域?yàn)?

當(dāng)x2∈[0,3]時(shí),則

② 當(dāng)A>0時(shí),g(x2)值域?yàn)?

②當(dāng)A<0時(shí),g(x2)值域?yàn)?

而依據(jù)題意有f(x1)的值域是g(x2)值域的子集

∴A≥10或A≤﹣20


(3)解:2sin2x﹣3sinx+1=a﹣sinx化為2sin2x﹣2sinx+1=a在[0,2π]上有兩解

換t=sinx則2t2﹣2t+1=a在[﹣1,1]上解的情況如下:

① 當(dāng)在(﹣1,1)上只有一個(gè)解或相等解,x有兩解(5﹣a)(1﹣a)≤0或△=0

∴a∈[1,5]或

②當(dāng)t=﹣1時(shí),x有惟一解

③當(dāng)t=1時(shí),x有惟一解

故a∈(1,5)∪{ }


【解析】(1)由已知可得,y=f(sinx)=2sin2x﹣3sinx+1設(shè)t=sinx,由x 可得0≤t≤1,從而可得關(guān)于 t的函數(shù) ,結(jié)合二次函數(shù)的性質(zhì)可求(2)依據(jù)題意有f(x1)的值域是g(x2)值域的子集,要求 A的取值范圍,可先求f(x1)值域,然后分①當(dāng)A>0時(shí),g(x2)值域②當(dāng)A<0時(shí),g(x2)值域,建立關(guān)于 A的不等式可求A 的范圍.(3)2sin2x﹣3sinx+1=a﹣sinx化為2sin2x﹣2sinx+1=a在[0,2π]上有兩解令t=sinx則2t2﹣2t+1=a在[﹣1,1]上解的情況可結(jié)合兩函數(shù)圖象的交點(diǎn)情況討論.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用二次函數(shù)的性質(zhì)和三角函數(shù)的最值,掌握當(dāng)時(shí),拋物線(xiàn)開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線(xiàn)開(kāi)口向下,函數(shù)在上遞增,在上遞減;函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)是二次函數(shù),方程f(x)=0有兩相等實(shí)根,且f′(x)=2x+2
(1)求f(x)的解析式.
(2)求函數(shù)y=f(x)與y=﹣x2﹣4x+1所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足a1=2,前n項(xiàng)和為Sn , 若Sn=2(an﹣1),(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(log2an+12﹣(log2an2 , 若cn=anbn , 求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為平行四邊形,AB=3,AC=4,AD=5,SA⊥平面ABCD.

(1)證明:AC⊥平面SAB;
(2)若SA=2,求三棱錐A﹣SCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義域?yàn)镽的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),則不等式f(log4x)+f(log0.25x)≤2f(1)的解集為(  )

A. [,2] B. [,4] C. [,2] D. [,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】證明
(1)如果a,b都是正數(shù),且a≠b,求證: + +
(2)設(shè)x>﹣1,m∈N* , 用數(shù)學(xué)歸納法證明:(1+x)m≥1+mx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=lgx2 , g(x)=2lgx?
B.f(x)= ? ,g(x)=
C.f(x)=x﹣2,g(x)= ?
D.f(x)=lgx﹣2,g(x)=lg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 + =1(a>b>0)的離心率為 ,且過(guò)點(diǎn)( , ).
(1)求橢圓方程;
(2)設(shè)不過(guò)原點(diǎn)O的直線(xiàn)l:y=kx+m(k≠0),與該橢圓交于P、Q兩點(diǎn),直線(xiàn)OP、OQ的斜率依次為k1、k2 , 滿(mǎn)足4k=k1+k2 , 試問(wèn):當(dāng)k變化時(shí),m2是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,在其定義域上既是奇函數(shù)又是增函數(shù)的是(
A.y=logax
B.y=x3+x
C.y=3x
D.y=﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案