【題目】已知線段AB的長為2,動點C滿足 (μ為常數(shù),μ>﹣1),且點C始終不在以點B為圓心 為半徑的圓內(nèi),則μ的范圍是 .
【答案】(﹣1,﹣ ]∪[ ,+∞)
【解析】解:以線段AB所在的直線為x軸,AB的中垂線為y軸,建立平面直角坐標系,如圖所示;
設(shè)點C(x,y),則A(﹣1,0),B(1,0),
=(﹣1﹣x,﹣y), =(1﹣x,﹣y);
由 ,得(﹣1﹣x)(1﹣x)+(﹣y)2=μ,
∴μ=x2+y2﹣1;①
又點C不在以點B為圓心 為半徑的圓內(nèi),
∴(x﹣1)2+y2≥ ,
即x2+y2﹣2x+1≥ ;②
由①②得μ≥2x﹣ ,其中x≤ 或x≥ ;
當(dāng)x≤ 時,μ≤﹣ ,當(dāng)x≥ 時,μ≥ ;
又μ>﹣1,
∴μ的范圍是﹣1<μ≤﹣ 或μ≥ .
所以答案是:(﹣1,﹣ ]∪[ ,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調(diào)函數(shù);②函數(shù), 的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.
()求函數(shù)的所有“保值”區(qū)間.
()函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)一定不是R上的減函數(shù);
②用反證法證明命題“若實數(shù)a,b,滿足a2+b2=0,則a,b都為0”時,“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)a,b都不為0”.
③把函數(shù)y=sin(2x+ )的圖象向右平移 個單位長度,所得到的圖象的函數(shù)解析式為y=sin2x.
④“a=0”是“函數(shù)f(x)=x3+ax2(x∈R)為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)集,其中, .定義向量集.若對于任意,存在,使得,則稱具有性質(zhì).例如具有性質(zhì).
(1)若,且具有性質(zhì),求的值;
(2)若具有性質(zhì),求證: ,且當(dāng)時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }是等比數(shù)列,并求{an}的通項公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 數(shù)列{bn}的前n項和為Tn , 若不等式(﹣1)nλ<Tn+ 對一切n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:方程 + =1表示雙曲線;命題q:x∈R,使得x2+mx+m+3<0成立.若“p且¬q”為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=a(a>0),其前n項和為Sn , 設(shè)bn=an+an+1(n∈N*).
(1)若a2=a+1,a3=2a2 , 且數(shù)列{bn}是公差為3的等差數(shù)列,求S2n;
(2)設(shè)數(shù)列{bn}的前n項和為Tn , 滿足Tn=n2 .
①求數(shù)列{an}的通項公式;
②若對n∈N*,且n≥2,不等式(an﹣1)(an+1-1)≥2(1﹣n)恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com