在直角坐標系xOy中,設A(3,2),B(-2,-3),沿y軸把坐標平面折成120°的二面角后,AB的長為
 
考點:用空間向量求平面間的夾角
專題:空間位置關系與距離
分析:作AC⊥y軸,BD⊥y軸,AM平行等于CD,連接AB,MD,根據(jù)二面角的平面角的定義可知∠BDM就是二面角的平面角,則∠BDM=120°,最后根據(jù)余弦定理可知AB的長.
解答: 解:作AC垂直y軸,BD垂直y軸,AM平行等于CD,
連接AB,MD,CD=5,BD=2,AC=3=MD,
BD=2,AC=MD=3,而BD⊥y軸,MD⊥y軸(MD∥AC),
∠BDM就是二面角的平面角,
∴∠BDM=120°,
∴由余弦定理得:BM=
19
,AM=5,
∴由勾股定理得AB=2
11
,
故答案為:2
11
點評:本題主要考查了空間兩點的距離,以及二面角平面角的應用,同時考查了空間想象能力,計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=logax(0<a<1)的導函數(shù)f′(x),A=f′(a),B=f(a+1)-f(a),C=f′(a+1),D=f(a+2)-f(a+1),則A,B,C,D,中最大的數(shù)是( 。
A、AB、BC、CD、D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的最大值和最小值,以及使函數(shù)取得最大值、最小值的自變量x的值:
(1)y=(sinx-
3
2
2-2;
(2)y=-sin2x+
3
sinx+
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m,n是兩條不同的直線,α,β,γ是三個不同的平面,給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;    
②若m∥α,n∥α,則m∥n;
③若α∥β,β∥γ,m⊥α,則m⊥γ;
④若α⊥γ,β⊥γ,則α∥β;
其中正確命題的序號是( 。
A、①和③B、②和③
C、②和④D、①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在坐標原點O,焦點在x軸上的橢圓C的離心率為
1
2
,且經過點M(1,
3
2
).
(1)求橢圓C的方程;
(2)若F是橢圓C的右焦點,過F的直線交橢圓C于M、N兩點,T為直線x=4上任意一點,且T不在x軸上,
(ⅰ)求
FM
FN
的取值范圍;
(ⅱ)若OT平分線段MN,證明:TF⊥MN(其中O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)
3(-4)3
-(
1
2
0+0.25 
1
2
×(
-1
2
-4;
(2)2-
1
2
+
(-4)0
2
+
1
2
-1
-
(1-
5
)
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

log3
3
=( 。
A、1
B、
1
2
C、-
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c,若20a
BC
+15b
CA
+12c
AB
=
0
,則△ABC的最小角的正弦值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
f(x+3),x≤0
,則f(-10)的值是( 。
A、-2B、-1C、0D、1

查看答案和解析>>

同步練習冊答案