5.已知命題p:?m∈[-1,1],不等式a2-5a+7≥m+2恒成立;命題q:x2+ax=2=0有兩個不同的實數(shù)根,若p∨q為真,且p∧q為假,求實數(shù)a的取值范圍.

分析 先求出當(dāng)p真、q真時,a的取值范圍,由p、q一真一假列式計算即可,

解答 解:命題p真:?m∈[-1,1],不等式a2-5a+7≥m+2恒成立⇒a2-5a+7≥(m+2)max=3⇒a≤1或a≥4;
命題q真:x2+ax=2=0有兩個不同的實數(shù)根⇒△=a2-8>0⇒a<-$2\sqrt{2}$或a$>2\sqrt{2}$;
若p∨q為真,且p∧q為假,則p、q一真一假,
當(dāng)p真q假時,$\left\{\begin{array}{l}{a≤1或a≥4}\\{-2\sqrt{2}≤a≤2\sqrt{2}}\end{array}\right.$⇒-2$\sqrt{2}$≤a≤1
當(dāng)p假q真時,$\left\{\begin{array}{l}{1<a<4}\\{a<-2\sqrt{2}或a>2\sqrt{2}}\end{array}\right.$⇒2$\sqrt{2}$<a<4
∴實數(shù)a的取值范圍為:⇒-2$\sqrt{2}$≤a≤1或2$\sqrt{2}$<a<4.

點評 本題考查了復(fù)合命題的真假的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)F1,F(xiàn)2是橢圓C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}$=1(a1>b1>0)與雙曲線C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}$=1(a2>0,b2>0)的公共焦點,曲線C1,C2在第一象限內(nèi)交于點M,∠F1MF2=90°,若橢圓C1的離心率e1∈[$\frac{{\sqrt{6}}}{3}$,1),則雙曲線C2的離心率e2的范圍是(  )
A.$({1,\sqrt{3}}]$B.$({1,\sqrt{2}}]$C.$[{\sqrt{3},+∞})$D.$[{\sqrt{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)滿足f(4+x)=f(x),且x∈(-2,2]時,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}(|x+\frac{1}{x}|-|x-\frac{1}{x}|),0<x≤2}\\{-({x}^{2}+2x),-2<x≤0}\end{array}\right.$則函數(shù)g(x)=f(x)-|log4|x||的零點個數(shù)是( 。
A.4B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若命題:“?x∈R,使得ax2+(a-3)x+1<0”為假命題.則實數(shù)a的范圍為(  )
A.0<a≤1或a≥9B.a≤1或a≥9C.1≤a≤9D.a≥9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知雙曲線C的漸近線方程為y=±$\frac{1}{2}$x,點(3,$\sqrt{2}$)在雙曲線上.
(1)求雙曲線C的方程;
(2)過點P(0,1)的直線l交雙曲線C于A,B兩點,交x軸于點Q(點Q與雙曲線的頂點不重合),當(dāng)$\overrightarrow{PQ}$=λ$\overrightarrow{QA}$=μ$\overrightarrow{QB}$,且λ•μ=-5時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知cos(θ+$\frac{5π}{12}$)=-$\frac{\sqrt{2}}{2}$,且θ為銳角,則cos($\frac{π}{4}$-θ)的值為( 。
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C1:$\frac{{x}^{2}}{4}$+y2=1和圓C2:x2+y2=4,A,B,F(xiàn)分別為橢圓C1左頂點、右頂點和左焦點.
(1)點P是曲線C2上位于第一象限的一點,若△OPF的面積為$\frac{3}{2}$,求∠OPB;
(2)點M和N分別是橢圓C1和圓C2上位于x軸上方的動點,且直線AN的斜率是直線AM斜率的2倍,證明直線MN⊥x軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}為等差數(shù)列,且a1+a7+a13=4π,則cos(a2+a12)=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$a={5^{{{log}_3}3.4}},b={5^{{{log}_4}3.6}},c={(\frac{1}{5})^{{{log}_3}0.3}}$,則( 。
A.c>a>bB.b>a>cC.b>a>cD.a>c>b

查看答案和解析>>

同步練習(xí)冊答案