△ABC中,A=
π
3
,BC=
3
,AC=
2
,則角B等于(  )
A、
π
6
B、
π
4
C、
4
D、
π
4
4
考點(diǎn):正弦定理
專(zhuān)題:解三角形
分析:根據(jù)題意和正弦定理求出sinB的值,由邊的大小關(guān)系和內(nèi)角的范圍求出角B.
解答: 解:由題意得△ABC中,A=
π
3
,BC=
3
,AC=
2
,
由正弦定理得
AC
sinB
=
BC
sinA
,
即sinB=
ACsinA
BC
=
2
×
3
2
3
=
2
2
,
因?yàn)?<B<π,所以B=
π
4
4

由BC>AC得,A>B,則B=
π
4

故選:B.
點(diǎn)評(píng):本題考查正弦定理的應(yīng)用,以及邊角的關(guān)系,熟練掌握定理和公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某研究機(jī)構(gòu)對(duì)高一學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù)
x67891012
y233456
該研究機(jī)構(gòu)的研究方案是:先從這六組數(shù)據(jù)中選取四組求線性回歸方程,再用剩下的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),根據(jù)x=6,8,10,12四組數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回歸方程
?
y
=
?
b
x+
?
a
;
(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)1,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該機(jī)構(gòu)所得線性回歸方程是否理想?
(相關(guān)公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的周期為2的函數(shù),當(dāng)x∈[-1,1]時(shí),f(x)=
-4x2+2,-1≤x<0
x,0≤x<1
,則f(-
5
2
)=( 。
A、1
B、
1
2
C、-23
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R上定義運(yùn)算?:x?y=x(2-y),已知關(guān)于x的不等式(x+1)?(x+1-a)>0的解集是{x|b<x<1}.
(1)x求實(shí)數(shù)a,b
(2)對(duì)于任意的t∈A,不等式x2+(t-2)x+1>0恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x+1|-|x-1|(x∈R).
(1)如果命題“對(duì)于所有x∈R,f(x)≤a”是真命題,求a的取值范圍;
(2)如果命題“有一個(gè)x∈R,f(x)≤a”是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m>0,n>0,且2m,
5
2
,3n成等差數(shù)列,則
2
m
+
3
n
的最小值為( 。
A、
5
2
B、5
C、
15
2
D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中有6個(gè)球,其中4個(gè)白球,2個(gè)紅球,從袋中任意取出2個(gè)球,求下列事件的概率;
(1)A:取出的2個(gè)球全是白球;
(2)B:取出的2個(gè)球一個(gè)是白球,另一個(gè)是紅球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y=f(x)+2x為奇函數(shù),且g(x)=f(x)+2,若g(-2)=t,則f(2)=
 
.(用含t的代數(shù)式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1,l2.過(guò)橢圓C的右焦點(diǎn)F作直線l,使l⊥l1,又l與l2交于點(diǎn)P,設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A,B.
(Ⅰ)若l1與l2的夾角為60°,且雙曲線的焦距為4,求橢圓C的方程;
(Ⅱ)求
|FA|
|AP|
的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案