11.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2$\sqrt{5}$sinθ.若點P的坐標為(3,$\sqrt{5}}$),求PA+PB的值.

分析 把圓C的極坐標方程化為直角坐標方程,把直線l的參數(shù)方程代入直角坐標方程,利用根與系數(shù)的關(guān)系、參數(shù)的幾何意義即可得出.

解答 解:圓C的方程為ρ=2$\sqrt{5}$sinθ,即${ρ}^{2}=2\sqrt{5}$ρsinθ,
化為直角坐標方程:x2+y2=2$\sqrt{5}$y,
直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),
代入上述方程可得:t2-3$\sqrt{2}$t+4=0,
∴t1+t2=3$\sqrt{2}$,
∴PA+PB=|t1+t2|=3$\sqrt{2}$.

點評 本題主要考查極坐標方程與直角坐標方程的轉(zhuǎn)化、參數(shù)方程與普通方程的轉(zhuǎn)化及其應(yīng)用、一元二次方程的根與系數(shù)的關(guān)系等基礎(chǔ)知識,意在考查考生的分析問題解決問題的能力、轉(zhuǎn)化能力、運算求解能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b∈R,不等式$|\begin{array}{l}{x^2}&{1}&{x}\\&{-a}&{1}\\{x}&{a}&{-1}\end{array}|$>0的解為1<x<2,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=log2$\frac{2x-1}{2x+1}$,g(x)=log2$\frac{2x+1}{8x+12}$.
(1)求證:函數(shù)y=f(x)的圖象關(guān)于坐標原點對稱;
(2)求證:f(x+1)-2=g(x),并指出函數(shù)y=g(x)圖象對稱中心的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}\right.$(α為參數(shù)),若以原點為極點,x軸非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρ(sinθ-cosθ)=4,
(1)已知點M的極坐標為(2$\sqrt{2}$,$\frac{π}{4}$),寫出點M關(guān)于直線l對稱點M′的直角坐標;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=x2-|x|-6,則f(x)的零點個數(shù)為(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓C的方程為x2+y2=4.
(1)求過點P(1,2)且與圓C相切的直線l的方程;
(2)直線l過點P(1,2),且與圓C交于A,B兩點,若|AB|=2$\sqrt{3}$,求直線l的方程;
(3)M是圓C上的動點,定點N的坐標為(0,1),若Q為線段MN的中點,求動點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圓的方程為x2+y2=2,若直線y=x-b與圓相切,則b等于( 。
A.2B.-2C.0D.2或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知正三棱錐P-ABC的外接球的半徑為2,且球心在點A,B,C所確定的平面上,則該正三棱錐的表面積是$3(\sqrt{15}+\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若向量$\overrightarrow{a}$,$\overrightarrow$滿足:$\overrightarrow{a}$=(2,-3)、$\overrightarrow$=(x,6),且$\overrightarrow{a}$∥$\overrightarrow$.則|$\overrightarrow{a}$+$\overrightarrow$|的值為( 。
A.$\sqrt{5}$B.$\sqrt{13}$C.5D.13

查看答案和解析>>

同步練習(xí)冊答案