已知圓及直線. 當直線被圓截得的弦長為時, 求(1)的值; (2)求過點并與圓相切的切線方程.

(1);(2)

解析試題分析:(1)涉及直線被圓所截得弦長的計算問題時,一般是利用垂徑定理,在以圓心、弦的端點、弦的中點為頂點的直角三角中,利用勾股定理列式求值,該題中先計算圓心到直線的距離,可列式為,進而求;(2)先利用點斜式方程設(shè)直線為,因為直線和圓相切,利用求參數(shù),因為點在圓外,所以切線可引兩條,則會想到另一條直線必是斜率不存在 情況,再補.

試題解析:(1)依題意可得圓心,則圓心到直線的距離,由勾股定理可知,代入化簡得,解得,又,所以
(2)由(1)知圓, 又在圓外,①當切線方程的斜率存在時,設(shè)方程為,由圓心到切線的距離可解得 ,切線方程為……9分,②當過斜率不存在,易知直線與圓相切,綜合①②可知切線方程為.
考點:1、弦長問題;2、直線和圓的位置關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓Cx2y2x-6ym=0與直線lx+2y-3=0.
(1)若直線l與圓C沒有公共點,求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點,O為原點,且OPOQ,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,圓O與離心率為的橢圓T:)相切于點M

⑴求橢圓T與圓O的方程;
⑵過點M引兩條互相垂直的兩直線與兩曲線分別交于點A、C與點B、D(均不重合)。
①若P為橢圓上任一點,記點P到兩直線的距離分別為、,求的最大值;
②若,求的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長之比為3:1;③圓心到直線的距離為,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點且為
求:的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C: 直線
(1)證明:不論取何實數(shù),直線與圓C恒相交;
(2)求直線被圓C所截得的弦長的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點且為時,求:的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求圓心在直線3x+y-5=0上,并且經(jīng)過原點和點(4,0)的圓的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線為參數(shù)),圓(極軸與軸的非負半軸重合,且單位長度相同)。
⑴求圓心到直線的距離;
⑵若直線被圓截的弦長為,求的值。

查看答案和解析>>

同步練習冊答案