7.函數(shù)y=$\sqrt{|x|-1}$的單調(diào)遞減區(qū)間是(-∞.-1).

分析 利用復(fù)合函數(shù)的單調(diào)性:同增異減,進(jìn)行求解.

解答 解:函數(shù)y=$\sqrt{|x|-1}$,其定義域?yàn)椋?∞,-1]∪[1,+∞)
令y=${u}^{\frac{1}{2}}$,(u≥0)
根據(jù)冪函數(shù)的性質(zhì),在其定義域內(nèi)是增函數(shù).
u=|x|-1,在(-∞,-1)是減函數(shù),在(1,+∞)是增函數(shù).
根據(jù)復(fù)合函數(shù)的單調(diào)性:同增異減,
那么:y=$\sqrt{|x|-1}$的單調(diào)遞減區(qū)間是:(-∞,-1)
故答案為:(-∞,-1).

點(diǎn)評(píng) 本題考查了定義域的求法和復(fù)合函數(shù)的單調(diào)性的判斷,要抓住“同增異減”進(jìn)行判斷.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=xlnx-$\frac{a}{2}$x2
(1)當(dāng)a=2時(shí),求函數(shù)在x=1處的切線方程;
(2)函數(shù)f(x)在x∈(0,e)時(shí)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.當(dāng)x∈(0,1)時(shí),不等式x2<loga(x+1)恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(2,+∞)B.[2,+∞)C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)m滿足對(duì)任意 x∈M(M⊆D),均有x+m∈D,且f(x+m)≥f(x),則稱f(x)為M上的m高調(diào)函數(shù).如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的8高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是$[-\sqrt{2},\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)=x2+ax(a∈R),則下列結(jié)論正確的是( 。
A.存在a∈R,使f (x)是偶函數(shù)
B.存在a∈R,f (x)是奇函數(shù)
C.對(duì)于任意的a∈R,f (x)在(0,+∞)上是增函數(shù)
D.對(duì)于任意的a∈R,f (x)在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.甲、乙兩人獨(dú)立解答某道題,解錯(cuò)的概率分別為a和b,那么兩人都解對(duì)此題的概率是( 。
A.1-abB.1-(1-a)(1-b)C.(1-a)(1-b)D.a(1-b)+b(1-a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)l是平面α外一條直線,過(guò)l作平面β,使β∥α,則在下列結(jié)論中,正確的是( 。
A.這樣的β只能作一個(gè)B.這樣的β至多有一個(gè)
C.這樣的β至少可作一個(gè)D.這樣的β不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖是一個(gè)幾何體的三視圖,若它的體積是3$\sqrt{3}$,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.畫出函數(shù)f(x)=|x2-4x-5|的圖象,并寫出函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案