【題目】如圖, 中,,分別為,邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】

1)由,分別為邊的中點(diǎn),可得,由已知結(jié)合線(xiàn)面垂直的判定可得平面,從而得到平面;(2)取的中點(diǎn),連接,由已知證明平面,過(guò),分別以,,所在直線(xiàn)為,,軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個(gè)法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.

(1)因?yàn)?/span>分別為,邊的中點(diǎn),

所以,

因?yàn)?/span>

所以,

又因?yàn)?/span>,

所以平面,

所以平面

(2)取的中點(diǎn),連接

由(1)知平面,平面

所以平面平面,

因?yàn)?/span>,

所以,

又因?yàn)?/span>平面,平面平面,

所以平面,

過(guò),分別以,所在直線(xiàn)為軸建立空間直角坐標(biāo)系,則,

,,

設(shè)平面的法向量為,

,

易知為平面的一個(gè)法向量,

所以平面與平面所成銳二面角的余弦值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),拋物線(xiàn)上橫坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離為.

(Ⅰ)求拋物線(xiàn)的方程及其準(zhǔn)線(xiàn)方程;

(Ⅱ)過(guò)的直線(xiàn)交拋物線(xiàn)于不同的兩點(diǎn),交直線(xiàn)于點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn). 是否存在這樣的直線(xiàn),使得? 若不存在,請(qǐng)說(shuō)明理由;若存在,求出直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線(xiàn)的方程為,曲線(xiàn)是以坐標(biāo)原點(diǎn)為頂點(diǎn),直線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)分別求出直線(xiàn)與曲線(xiàn)的極坐標(biāo)方程:

(2)點(diǎn)是曲線(xiàn)上位于第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),點(diǎn)是直線(xiàn)上位于第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),且,請(qǐng)求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射手射擊1,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4,且各次射擊是否擊中目標(biāo)相互之間沒(méi)有影響,有下列結(jié)論:

①他第3次擊中目標(biāo)的概率是0.9;

②他恰好擊中目標(biāo)3次的概率是;

③他至少擊中目標(biāo)1次的概率是;

④他至多擊中目標(biāo)1次的概率是

其中正確結(jié)論的序號(hào)是(

A.①②③B.①③

C.①④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn)A,B始終滿(mǎn)足∠AFB=60°,過(guò)弦AB的中點(diǎn)H作拋物線(xiàn)的準(zhǔn)線(xiàn)的垂線(xiàn)HN,垂足為N,的取值范圍為

A.(0,]B.[,+∞)

C.[1,+∞)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方體中,的中點(diǎn),上任意一點(diǎn),,上兩動(dòng)點(diǎn),且的長(zhǎng)為定值,則下面四個(gè)值中不是定值的是(

A.點(diǎn)到平面的距離B.直線(xiàn)與平面所成的角

C.三棱錐的體積D.二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間四邊形ABCD的邊AB,BC,CD,DA上分別取點(diǎn)E,F(xiàn),G,H,如果EH,F(xiàn)G相交于一點(diǎn)M,那么M一定在直線(xiàn)________上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別為,上下頂點(diǎn)分別為,左、右焦點(diǎn)分別為,,離心率為e.

1)若,設(shè)四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;

2)若,設(shè)直線(xiàn)與橢圓C相交于P,Q兩點(diǎn),分別為線(xiàn)段的中點(diǎn),坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某個(gè)命題與自然數(shù)n有關(guān),如果當(dāng))時(shí)該命題成立,則可得時(shí)該命題也成立,若已知時(shí)命題不成立,則下列說(shuō)法正確的是______(填序號(hào))

1時(shí),該命題不成立;

2時(shí),該命題不成立;

3時(shí),該命題可能成立;

4時(shí),該命題可能成立也可能不成立,但若時(shí)命題成立,則對(duì)任意,該命題都成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案