19.設(shè)向量$\overrightarrow a$=(m-2,m+3),$\overrightarrow b$=(3,2),若$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則實數(shù)m的取值范圍是(  )
A.(-∞,-13)∪(-13,0)B.(-∞,0)C.(-13,0)D.(-13,0)∪(0,+∞)

分析 $\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,可得:$\overrightarrow{a}•\overrightarrow$=3(m-2)+2(m+3)<0,且不能反向共線,即3(m+3)-2(m-2)≠0,解出即可得出.

解答 解:∵$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,∴$\overrightarrow{a}•\overrightarrow$=3(m-2)+2(m+3)<0,
且不能反向共線,即3(m+3)-2(m-2)≠0,
解得m<0,m≠-13.
則實數(shù)m的取值范圍是(-∞,-13)∪(-13,0),
故選:A.

點評 本題考查了向量的夾角公式、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x3-2x2+x+3,x∈[-2,1].求:
(1)f(x)的單調(diào)區(qū)間        
(2)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.平面幾何中,有“邊長為a的正三角形內(nèi)任一點到三邊距離之和為定值$\frac{{\sqrt{3}}}{2}a$”,類比上述命題,棱長為a的正四面體內(nèi)任一點到四個面的距離之和為$\frac{{\sqrt{6}}}{3}a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,a、b、c分別為角A、B、C所對的邊,cosA=$\frac{4}{5}$,b=2,c=5,則a為( 。
A.13B.$\sqrt{13}$C.17D.$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=(1-2x)10,則導(dǎo)函數(shù)f′(x)的展開式x2項的系數(shù)為-2880.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{e_1}$、$\overrightarrow{e_2}$是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中,不能作為一組基底的是( 。
A.$\overrightarrow{e_1},\overrightarrow{e_1}-\overrightarrow{e_2}$B.$\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow{e_1}-\overrightarrow{e_2}$
C.$\overrightarrow{e_1}+2\overrightarrow{e_2},-2\overrightarrow{e_1}+\overrightarrow{e_2}$D.$\overrightarrow{e_1}-\overrightarrow{3{e_2}},-2\overrightarrow{e_1}+6\overrightarrow{e_2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=$\left\{\begin{array}{l}x-1,x≤1\\{x^2}-4x+3,x>1\end{array}\right.$,則g(x)=f(x)-lnx的零點個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2離心率為$\frac{{\sqrt{3}}}{2}$,圓O:x2+y2=1的切線l與橢圓C相交于A,B兩點,滿足|AF1|+|AF2|=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)弦長|AB|=$\sqrt{3}$時,求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.?dāng)S兩顆均勻的骰子,則點數(shù)之和為4的概率等于( 。
A.$\frac{1}{18}$B.$\frac{1}{9}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

同步練習(xí)冊答案