19.已知a,b,c為正實(shí)數(shù),且a+b≤6c,$\frac{2}{a}$+$\frac{3}$≤$\frac{2}{c}$,則$\frac{3a+8b}{c}$的取值范圍為(0,48).

分析 利用已知條件化簡(jiǎn)不等式,畫出約束條件的可行域,然后判斷目標(biāo)函數(shù)的范圍即可.

解答 解:a,b,c為正實(shí)數(shù),且a+b≤6c,$\frac{2}{a}$+$\frac{3}$≤$\frac{2}{c}$,
可得$\frac{a}{c}+\frac{c}≤6$,$\frac{2c}{a}+\frac{3c}≤2$,令$x=\frac{a}{c}$,y=$\frac{c}$,
不等式化簡(jiǎn)為:$\left\{\begin{array}{l}{x>0}\\{y>0}\\{x+y≤6}\\{\frac{2}{x}+\frac{3}{y}≤2}\end{array}\right.$,
則z=$\frac{3a+8b}{c}$化為:z=3x+8y,
畫出不等式組的可行域如圖:
z=3x+8y如圖中的紅色直線,當(dāng)z經(jīng)過原點(diǎn)與a時(shí),分別取得最小值與最大值,
所以3x+8y的最小值為:0,最大值為:48.
所以$\frac{3a+8b}{c}$的取值范圍為:(0,48).
故答案為:(0,48)

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,考查數(shù)形結(jié)合以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β
其中正確命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,得曲線C2的極坐標(biāo)方程為ρ+6sinθ-8cosθ=0(ρ≥0)
(Ⅰ)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)直線l:$\left\{{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λ\;t}\end{array}}\right.$(t為參數(shù))過曲線C1與y軸負(fù)半軸的交點(diǎn),求與直線l平行且與曲線C2相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知O為原點(diǎn),當(dāng)θ=-$\frac{π}{6}$時(shí),參數(shù)方程$\left\{\begin{array}{l}{x=3cosθ}\\{y=9sinθ}\end{array}\right.$(θ為參數(shù))上的點(diǎn)為A,則直線OA的傾斜角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.我國(guó)的《洛書》中記載著世界上最古老的幻方:將1,2,…,9填入方格內(nèi),使三行、三列,兩條對(duì)角線的三個(gè)數(shù)之和都等于15,如圖所示.
一般地,將連續(xù)的正整數(shù)1,2,…,n2填入n×n個(gè)方格中,使得每行,每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形叫做n階幻方.記n階幻方的對(duì)角線上數(shù)的和為Nn,例如N3=15,N4=34,N5=65…那么Nn=$\frac{n({n}^{2}+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.甲、乙、丙三人到戶外植樹,三人分工合作,一人挖坑和填土,一人施肥,一人澆水,他們的身高各不同,現(xiàn)了解到以下情況:
①甲不是最高的;
②最高的沒澆水;
③最矮的施肥;
④乙不是最矮的,也沒挖坑和填土.
可以判斷丙的分工是挖坑和填土(從挖坑,施肥,澆水中選一項(xiàng)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在同一坐標(biāo)系中,將曲線y=$\frac{1}{2}$sin3x變?yōu)榍y'=sinx′的伸縮變換是( 。
A.$\left\{{\begin{array}{l}{x=3x'}\\{y=\frac{1}{2}y'}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x'=3x}\\{y'=\frac{1}{2}y}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=3x'}\\{y=2y'}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x'=3x}\\{y'=2y}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.把下列參數(shù)方程化為普通方程,并說明他們各表示什么曲線:
(1)$\left\{\begin{array}{l}x=1-3t\\ y=4t\end{array}$(t為參數(shù))
(2)$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}$(θ為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.球和它的內(nèi)接正方體的表面積之比是$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案