A. | $\frac{{3\sqrt{5}+2}}{2}$ | B. | $\frac{{2\sqrt{5}+3}}{3}$ | C. | $\frac{{2\sqrt{5}}}{3}$ | D. | $\sqrt{10}$ |
分析 畫出約束條件的可行域,利用|PQ|的幾何意義求解最大值即可.
解答 解:不等式組$\left\{\begin{array}{l}x-2y+1≥0\\ x≤2\\ x+y-1≥0\end{array}\right.$所表示的平面區(qū)域如圖:由:$\left\{\begin{array}{l}{x-2y+1=0}\\{x=2}\end{array}\right.$解得A(2,$\frac{3}{2}$).
點P為不等式組$\left\{\begin{array}{l}x-2y+1≥0\\ x≤2\\ x+y-1≥0\end{array}\right.$所表示的平面區(qū)域內(nèi)的一點,
點Q是圓M:(x+1)2+y2=1上的一個動點,
由圖可知:|PQ|的最大值為$|{AM}|+r=\frac{{3\sqrt{5}+2}}{2}$,
故選:A.
點評 本題考查線性規(guī)劃的簡單應(yīng)用,考查數(shù)形結(jié)合思想以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=-sin 2x | B. | f(x)的圖象關(guān)于x=-$\frac{π}{3}$對稱 | ||
C. | f($\frac{7π}{3}$)=$\frac{1}{2}$ | D. | f(x)的圖象關(guān)于(1,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1]∪[3,+∞) | B. | (-∞,-1]∪[2,+∞) | C. | (-∞,-3]∪[1,+∞) | D. | (-∞,-2]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ cm3 | B. | $\frac{8}{3}$ cm3 | C. | 2cm3 | D. | 4cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com