A. | 0個(gè) | B. | 1個(gè) | C. | 2 個(gè) | D. | 4個(gè) |
分析 由橢圓的標(biāo)準(zhǔn)方程,求得焦點(diǎn)坐標(biāo),則P坐標(biāo)為(m,n),求得$\overrightarrow{P{F}_{1}}$=(-2$\sqrt{3}$-m,-n),$\overrightarrow{P{F}_{2}}$=(2$\sqrt{3}$-m,-n),由題意可知$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,根據(jù)向量數(shù)量積的坐標(biāo)表示,求得n2=12-m2,將P代入橢圓方程,求得m2+4n2=16,即可求得m和n的值,即可求得P點(diǎn)的個(gè)數(shù).
解答 解:設(shè)橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1上的點(diǎn)P坐標(biāo)為P(m,n)
由a=4,b=2,c=2$\sqrt{3}$,
可得焦點(diǎn)分別為F1(-2$\sqrt{3}$,0),F(xiàn)2(-2$\sqrt{3}$,0)
由此可得$\overrightarrow{P{F}_{1}}$=(-2$\sqrt{3}$-m,-n),$\overrightarrow{P{F}_{2}}$=(2$\sqrt{3}$-m,-n),
由∠F1PF2=$\frac{π}{2}$,即$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
得(-2$\sqrt{3}$-m)(2$\sqrt{3}$-m)+n2=0,n2=12-m2,
又∵點(diǎn)P(m,n)在橢圓C上,即$\frac{{m}^{2}}{16}+\frac{{n}^{2}}{4}=1$
化簡得:m2+4n2=16,代入求得n2=$\frac{4}{3}$,m2=$\frac{32}{3}$,
∴n=±$\frac{2\sqrt{3}}{3}$,m=±$\frac{4\sqrt{6}}{3}$,
故這樣的點(diǎn)由4個(gè),
故選D.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,5] | B. | [10,+∞) | C. | (-∞,5]∪[10,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | 1 | C. | $\frac{\sqrt{5}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3或2 | B. | 2 | C. | -2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (0,3) | C. | (0,2) | D. | (0,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com