4.已知f($\sqrt{x}$+1)=x+3$\sqrt{x}$-1,且f(k)=3則實(shí)數(shù)k的值是(  )
A.-3或2B.2C.-2D.3

分析 由題意設(shè)t=$\sqrt{x}$+1,求出t≥1和x=(t-1)2,代入解析式化簡(jiǎn)求出f(x),代入f(k)=3化簡(jiǎn)求出k的值.

解答 解:由題意知,f($\sqrt{x}$+1)=x+3$\sqrt{x}$-1,
設(shè)t=$\sqrt{x}$+1,則t≥1,且x=(t-1)2
代入解析式得,f(t)=(t-1)2+3(t-1)-1=t2+t-3,
則f(x)=x2+x-3,(x≥1)
又f(k)=3,則f(k)=k2+k-3=3,
解得k=2或k=-3(舍去),
故選:B.

點(diǎn)評(píng) 本題考查了利用換元法求函數(shù)的解析式,注意函數(shù)的定義域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={y|y=log${\;}_{\frac{1}{2}}$x,x>1},B={y|y=2x,x<1},則A∩B=( 。
A.{y|0$<y<\frac{1}{2}$}B.C.{y|$\frac{1}{2}$<y<1}D.{y|0<y<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知底角為45°的等腰梯形ABCD,底邊BC長(zhǎng)為12,腰長(zhǎng)為4$\sqrt{2}$,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從左至右移動(dòng)(與梯形ABCD有公共點(diǎn))時(shí),直線l把梯形分成兩部分.
(1)令BF=x(0<x<12),試寫出直線右邊部分的面積y與x的函數(shù)解析式;
(2)在(1)的條件下,令y=f(x).構(gòu)造函數(shù)g(x)=$\left\{\begin{array}{l}{f(x),0<x<4}\\{(6-x)f(x),4<x<8}\end{array}\right.$.
①判斷函數(shù)g(x)在(4,8)上的單調(diào)性;
②判斷函數(shù)g(x)在定義域內(nèi)是否具有單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,則在橢圓C上滿足∠F1PF2=$\frac{π}{2}$的點(diǎn)P的個(gè)數(shù)有( 。
A.0個(gè)B.1個(gè)C.2 個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線y2=-x與直線y=k(x+1)相交于A(x1,y1),B(x2,y2)兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求y1y2的值;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,根據(jù)圖象:
(1)寫出函數(shù)f(x),x∈R的增區(qū)間并將圖象補(bǔ)充完整;
(2)寫出函數(shù)f(x),x∈R的解析式;
(3)若函數(shù)g(x)=f(x)-4ax+2,x∈[1,3],求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x2-1(-1≤x<0),則f-1(x)=-$\sqrt{x+1}$,x∈(-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=sinx-x,若f(cos2θ+2msinθ)+f(-2-2m)>0對(duì)任意的θ∈(0,$\frac{π}{2}$)恒成立,則實(shí)數(shù)m的取值范圍為[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(2x2-3x)•ex
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若方程(2x-3)•ex=$\frac{a}{x}$有且僅有一個(gè)實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案