已知動點
與平面上兩定點
連線的斜率的積為定值
.
(1)試求動點
的軌跡方程
;
(2)設(shè)直線
與曲線
交于
M.N兩點,當
時,求直線
的方程.
(1)設(shè)點
,則依題意有
,
整理得
,由于
,
所以求得的曲線C的方程為
.
(2)由
,消去
得
,
解得
x1="0,"
x2=
分別為
M,N的橫坐標)
由
得
,
所以直線
的方程
或
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知斜率為
的直線
過拋物線
的焦點
,且與拋物線交于
兩點,(1)求直線
的方程(用
表示);
(2)若設(shè)
,求證:
;
(3)若
,求拋物線方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
設(shè)點
在直線
上,過點
作雙曲線
的兩條切線
,切點為
,定點
。
(1)求證:三點
共線;
(2)過點
作直線
的垂線,垂足為
,試求
的重心
所在曲線方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知直線
與拋物線
相交于A、B兩點,O為原點,若
,
則
= ( )
A.
B.1 C.2 D.4
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢
圓C:
+
=1(a>b>0)的離心率e=
,且橢圓經(jīng)過點N(2,-3).
(1)求橢圓C的方程;
(2)求橢圓以M(-1,2)為中點的弦所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)橢圓
(
,
)的右焦點與拋物線
的焦點相同,離心率為
,則此橢圓的方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
若直線
與雙曲線
有且僅有一個公共點,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
橢圓
C的中心為坐標原點
O,焦點在
y軸上,離心率
e =
,橢圓上的點到焦點的最短距離為1-
, 直線
l與
y軸交于點
P(0,
m),與橢圓
C交于相異兩點
A、B,且
.
(1)求橢圓方程;
(2)若
,求
m的取值范圍.
查看答案和解析>>