已知橢圓,拋物線的焦點均在軸上,的中心和的頂點均為坐標(biāo)原點,從每條曲線上各取兩個點,將其坐標(biāo)記錄于表中:











 
(1)求的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線同時滿足條件:(ⅰ)過的焦點;(ⅱ)與交于不同兩點、,且滿足.若存在,求出直線的方程;若不存在,請說明理由.

(Ⅰ)方程為         
(Ⅱ)存在直線滿足條件,且的方程為:

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點,且離心率。

(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點、,且線段的垂直平分線過定點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
如圖,已知橢圓的長軸為,過點的直線軸垂直,直線所經(jīng)過的定點恰好是橢圓的一個頂點,且橢圓的離心率

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是橢圓上異于、的任意一點,軸,為垂足,延長到點使得,連接并延長交直線于點,的中點.試判斷直線與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為,線段的中點分別為,且△ 是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過做直線交橢圓于P,Q兩點,使,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分 )已知橢圓經(jīng)過點,一個焦點是
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓軸的兩個交點為、,點在直線上,直線、分別與橢圓交于、兩點.試問:當(dāng)點在直線上運動時,直線是否恒經(jīng)過定點?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線、的斜率分別為、,證明
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)離心率為的橢圓的左、右焦點分別為、,是坐標(biāo)原點.
(1)求橢圓的方程;
(2)若直線交于相異兩點、,且,求.(其中是坐標(biāo)原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)設(shè)橢圓的中心是坐標(biāo)原點,長軸在x軸上,離心率e=,已知點P(0,)到這個橢圓上的點的最遠距離是,求這個橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知是雙曲線上不同的三點,且連線經(jīng)過坐標(biāo)原點,
若直線的斜率乘積,求雙曲線的離心率;

查看答案和解析>>

同步練習(xí)冊答案