A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由已知利用倍角公式可求sinα,cosα,分別確定角α終邊所在的象限,即可得出結論
解答 解:∵sin$\frac{α}{2}$=$\frac{3}{5}$,cos$\frac{α}{2}$=-$\frac{4}{5}$,
∴sinα=2sin$\frac{α}{2}$cos$\frac{α}{2}$=2×$\frac{3}{5}$×(-$\frac{4}{5}$)=-$\frac{24}{25}$<0,可得α終邊所在的象限是第三、四象限;
cosα=2cos2$\frac{α}{2}$-1=2×(-$\frac{4}{5}$)2-1=$\frac{7}{25}$>0,可得:α終邊所在的象限是第一、四象限,
∴角α終邊所在的象限是第四象限.
故選:D.
點評 本題考查任意角的三角函數的定義及倍角公式的應用,考查角α終邊所在的象限的確定,屬于基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=1,g(x)=x2 | ||
C. | f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$ g(t)=|t| | D. | f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com