9.執(zhí)行如圖所示的程序框圖,則輸出S的值為( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.0D.$\frac{1}{2}$

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量s的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,利用正弦函數(shù)的周期性可得答案.

解答 解:模擬程序的運行,可得程序框圖的功能是計算并輸出S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+…+sin$\frac{2017π}{3}$的值,
由于sin$\frac{kπ}{3}$,k∈Z的取值周期為6,且周期內(nèi)取值之和為0,2017=336×6+1,
可得:S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+…+sin$\frac{2017π}{3}$=336×0+sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
故選:A.

點評 本題考查的知識點是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若${(x+2)^2}+\frac{y^2}{4}=1$,則x2+y2的取值范圍是[1,$\frac{28}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知0<α<π,sin(π-α)+cos(π+α)=m.
(1)當(dāng)m=1時,求α;
(2)當(dāng)$m=\frac{{\sqrt{5}}}{5}$時,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若輸入m=4,t=3,則輸出y=(  )
A.183B.62C.61D.184

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,-π<φ<0)的部分圖象如圖所示,為了得到g(x)=Asinωx的圖象,只需將函數(shù)y=f(x)的圖象( 。
A.向左平移$\frac{π}{6}$個單位長度B.向左平移$\frac{π}{12}$個單位長度
C.向右平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{12}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖的程序框圖,如果輸入三個數(shù)a,b,c,(a2+b2≠0)要求判斷直線ax+by+c=0與單位圓的位置關(guān)系,那么在空白的判斷框中,應(yīng)該填寫下面四個選項中的( 。
A.c=0?B.b=0?C.a=0?D.ab=0?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\frac{2sinα+cosα}{sinα-cosα}$=3,則tan2α=$-\frac{8}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x-3|-2|x+1|的最大值為m.
(1)求m的值和不等式f(x)<1的解集;
(2)若a,b∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,已知四邊形ABCD的直觀圖是一個邊長為1的正方形,則原圖形的面積為( 。
A.$2\sqrt{2}$B.6C.8D.4$\sqrt{2}$+2

查看答案和解析>>

同步練習(xí)冊答案