19.若${(x+2)^2}+\frac{y^2}{4}=1$,則x2+y2的取值范圍是[1,$\frac{28}{3}$].

分析 利用換元法,${(x+2)^2}+\frac{y^2}{4}=1$,可設(shè)x=cosθ-2,y=2sinθ,那么x2+y2=(cosθ-2)2+4sin2θ,利用三角函數(shù)的有界限求解即可.

解答 解:由題意:,${(x+2)^2}+\frac{y^2}{4}=1$,
設(shè)x=cosθ-2,y=2sinθ,
那么:x2+y2=(cosθ-2)2+4sin2θ=cos2θ-4cosθ+4+4sin2θ=cos2θ-4cosθ+8-4cos2θ=$-3(cosθ+\frac{2}{3})^{2}+\frac{4}{3}+8$,
當(dāng)$cosθ=-\frac{2}{3}$時,x2+y2取值最大值為$\frac{28}{3}$.
當(dāng)cosθ=1時,x2+y2取值最小值為1.
則x2+y2的取值范圍是[1,$\frac{28}{3}$]
故答案為:[1,$\frac{28}{3}$]

點(diǎn)評 本題主要考查了最值的求法,利用了三角函數(shù)的有界限的性質(zhì),換元的思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是( 。
A.f(x)=x3B.f(x)=x${\;}^{\frac{1}{2}}$C.f(x)=3xD.f(x)=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)隨機(jī)變量X~N(5,σ2),若P(X>10-a)=0.4,則P(X>a)=( 。
A.0.6B.0.4C.0.3D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在所有的兩位數(shù)(10~99)中,任取一個數(shù),則這個數(shù)能被2或3整除的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式$\frac{3}{5-3x}>1$的解集是$(\frac{2}{3},\frac{5}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是偶函數(shù),它在[0,+∞)上是減函數(shù),若f(lgx)>f(1),則x的取值范圍是( 。
A.$({\frac{1}{10},1})$B.$({\frac{1}{10},10})$C.$({0,\frac{1}{10}})∪({1,+∞})$D.(0,1)∪(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.甲、乙、丙、丁四個物體同時從某一點(diǎn)出發(fā)向同一個方向運(yùn)動,其路程fi(x)(i=1,2,3,4),關(guān)于時間x(x≥0)的函數(shù)關(guān)系式分別為f1(x)=2x-1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論:
①當(dāng)x>1時,甲走在最前面;
②當(dāng)x>1時,乙走在最前面;
③當(dāng)0<x<1時,丁走在最前面,當(dāng)x>1時,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運(yùn)動下去,最終走在最前面的是甲.
其中,正確的序號為( 。
A.①②B.①②③④C.②③④⑤D.③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤5\\ 2x+y≤4\\ x≥0\\ y≥0\end{array}\right.$,則目標(biāo)函數(shù)z=3x+2y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,則輸出S的值為(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.0D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案