A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由z(3+4i)=5-5i,得$z=\frac{5-5i}{3+4i}$,然后利用復數代數形式的乘除運算化簡復數z,求出復數z在復平面對應的點的坐標,則答案可求.
解答 解:由z(3+4i)=5-5i,
得$z=\frac{5-5i}{3+4i}$=$\frac{(5-5i)(3-4i)}{(3+4i)(3-4i)}=\frac{-5-35i}{25}=-\frac{1}{5}-\frac{7}{5}i$,
則復數z在復平面對應的點的坐標為:($-\frac{1}{5}$,$-\frac{7}{5}$),位于第三象限.
故選:C.
點評 本題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,是基礎題.
科目:高中數學 來源: 題型:選擇題
A. | {1,3} | B. | {-2,-1} | C. | {-2,-1,0} | D. | {0,1,3} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com