分析 (1)利用向量共線定理即可得出.
(2)利用向量垂直與數(shù)量積的關(guān)系即可得出.
解答 解:(1)k$\overrightarrow{a}$-$\overrightarrow$=(k-3,3k+4),$\overrightarrow{a}$+$\overrightarrow$=(4,-1).
∵k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$共線,∴-(k-3)-4(3k+4)=0,解得k=-1.
(2)∵k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$垂直,∴4(k-3)-(3k+4)=0,解得k=16.
點(diǎn)評 本題考查了向量共線定理、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分不用必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{{{cos}^2}x}}$ | B. | $-\frac{1}{{{{cos}^2}x}}$ | C. | $\frac{cos2x}{{{{cos}^2}x}}$ | D. | $-\frac{cos2x}{{{{cos}^2}x}}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com