7.已知$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,-4),當(dāng)k為何值時
(1)k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$共線.
(2)k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$垂直.

分析 (1)利用向量共線定理即可得出.
(2)利用向量垂直與數(shù)量積的關(guān)系即可得出.

解答 解:(1)k$\overrightarrow{a}$-$\overrightarrow$=(k-3,3k+4),$\overrightarrow{a}$+$\overrightarrow$=(4,-1).
∵k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$共線,∴-(k-3)-4(3k+4)=0,解得k=-1.
(2)∵k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+$\overrightarrow$垂直,∴4(k-3)-(3k+4)=0,解得k=16.

點(diǎn)評 本題考查了向量共線定理、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正實(shí)數(shù)x,y,且x2+y2=1,若f(x,y)=$\frac{{{x^3}+{y^3}}}{{{{(x+y)}^3}}}$,則f(x,y)的值域?yàn)閇$\frac{1}{4}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖在棱臺ABC-FED中,△DEF與△ABC分別是邊長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,點(diǎn)G為△ABC的重心,N為AB的中點(diǎn),點(diǎn)M是側(cè)棱AF上的點(diǎn)且$\frac{AM}{AF}$=λ.
(1)檔λ=$\frac{2}{3}$時,求證:GM∥平面DFN;
(2)若三棱錐M-BDE的體積VM-BDE=$\frac{\sqrt{3}}{9}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.平面直角坐標(biāo)系中,在由x軸、$x=\frac{π}{3}$、x=$\frac{5π}{3}$和y=2所圍成的矩形中任取一點(diǎn),滿足不等關(guān)系y≤1-sin3x的概率是(  )
A.$\frac{4π}{3}$B.$\frac{π}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線f(x)=ax3+bx2在x=1處的切線為y=3x-1,求:
(1)求f(x)的解析式;
(2)求過原點(diǎn)的f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在三棱錐A-BCD中,側(cè)面ABD⊥底面BCD,BC⊥CD,AB=AD=4,BC=6,BD=4$\sqrt{3}$,該三棱錐三視圖的正視圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“函數(shù)f(x)=a+lnx(x≥e)存在零點(diǎn)”是“a<-1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分不用必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{0≤x≤2}\\{x+y-2≥0}\\{x-y+2≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=3x-4y的最小值m與最大值M的積為-60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.y=tanx的導(dǎo)數(shù)是(  )
A.$\frac{1}{{{{cos}^2}x}}$B.$-\frac{1}{{{{cos}^2}x}}$C.$\frac{cos2x}{{{{cos}^2}x}}$D.$-\frac{cos2x}{{{{cos}^2}x}}$

查看答案和解析>>

同步練習(xí)冊答案