20.曲線的極坐標方程為ρ=2cosθ,則曲線的直角坐標方程為( 。
A.(x-1)2+y2=1B.x2+(y-1)2=1C.(x-2)2+y2=1D.x2+(y-2)2=1

分析 等式兩邊同乘ρ,轉(zhuǎn)化成直角坐標方程,再變成為圓的標準式方程.

解答 解:ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2=2x⇒x2-2x+1+y2=1,即(x-1)2+y2=1,故選A.

點評 在極坐標化直角坐標時,兩邊同乘ρ是常用技巧.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸近線與直線3x-y+1=0平行,則此雙曲線的離心率是( 。
A.$\sqrt{3}$B.$2\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知四個關(guān)系式:$\sqrt{3}$∈R,0.2∉Q,|-3|∈N,0∈∅,其中正確的個數(shù)(  )
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)的定義域為R,若對于任意的實數(shù)x,y,都有f(x)+f(y)=f(x+y),且x>0時,有f(x)>0
(1)判斷并證明函數(shù)f(x)的單調(diào)性;
(2)設(shè)f(1)=1,若f(x)<m2-2am+1對所有x∈[-1,1],a∈[-2,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點分別為F1(-3,0),F(xiàn)2(3,0).點P(x0,y0)是橢圓C在x軸上方的動點,且△PF1F2的周長為16.
(I)求橢圓C的方程;
(II)設(shè)點Q到△PF1F2三邊的距離均相等.當x0=3時,求點Q的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2t}\\{y=1+4t}\end{array}\right.$(t為參數(shù)),圓C的極坐標方程為$ρ=2\sqrt{2}sinθ$,則直線l與圓C的位置關(guān)系為( 。
A.相切B.相交C.相離D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=Asin(ωx+ϕ)(A,ω,ϕ為常數(shù),A>0,ω>0,0<ϕ≤π)的最小正周期為$\frac{2π}{3}$,最大值為2
(1)求A和ω的值;
(2)設(shè)函數(shù)f(x)為R上的偶函數(shù).
①求函數(shù)f(x)的解析式;
②由函數(shù)y=f(x)的圖象經(jīng)過怎樣的變換可以得到函數(shù)$y=sin(x+\frac{π}{6})$的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.4名同學甲、乙、丙、丁按任意次序站成一排,甲或乙站在邊上的概率為( 。
A.$\frac{1}{2}$B.$\frac{5}{6}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知P:?x∈R,x2-x+4<0;則¬P為?x∈R,x2-x+4≥0.

查看答案和解析>>

同步練習冊答案