【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓:經(jīng)過點(diǎn).設(shè)橢圓的左頂點(diǎn)為,右焦點(diǎn)為,右準(zhǔn)線與軸交于點(diǎn),且為線段的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)的直線與橢圓相交于另一點(diǎn)(在軸上方),直線與橢圓相交于另一點(diǎn),且直線與垂直,求直線的斜率.
【答案】(1)(2)
【解析】
(1)根據(jù)題意先得,,,由為的中點(diǎn),橢圓過點(diǎn),列出關(guān)系式,求出,,即可得出橢圓方程;
(2)先由題意確定直線的斜率必存在且大于0,設(shè)直線的方程為:,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理與題中條件,即可求出結(jié)果.
(1)因?yàn)?/span>,,,且為的中點(diǎn),
所以,則.
即,所以,.
因?yàn)辄c(diǎn)在橢圓上,
所以,
又因?yàn)?/span>,所以,則,.
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)由題意直線的斜率必存在且大于0,
設(shè)直線的方程為:.
代入橢圓方程并化簡得:,
因?yàn)?/span>,
得,,
當(dāng)時(shí),的斜率不存在,此時(shí)不符合題意.
當(dāng)時(shí),直線的方程為:,
因?yàn)?/span>,所以直線的方程為:,
兩直線聯(lián)立解得:,因?yàn)?/span>在橢圓上,
所以,化簡得:,即,
因?yàn)?/span>,所以,
此時(shí).
直線的斜率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,三角形為等邊三角形, ,且,是的中點(diǎn),是的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線過點(diǎn)與曲線交于不同兩點(diǎn),的中點(diǎn)為,與的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和,圓是以為圓心,半徑為的圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑所在的直線交于點(diǎn).
(1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(2)已知,是曲線上的兩點(diǎn),若曲線上存在點(diǎn),滿足(為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若直線l:x+y=0與圓C交于A,B兩點(diǎn),求弦AB的長;
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四個(gè)點(diǎn),,,中有3個(gè)點(diǎn)在橢圓:上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過原點(diǎn)的直線與橢圓交于,兩點(diǎn)(,不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線與軸、軸分別交于、兩點(diǎn),設(shè)直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐中,O為頂點(diǎn)S在底面ABCD內(nèi)的投影,P為側(cè)棱SD的中點(diǎn),且.
(1)證明:平面PAC.
(2)求直線BC與平面PAC的所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球運(yùn)動(dòng)的真諦不僅在于競技,更在于增強(qiáng)人民體質(zhì),培養(yǎng)人們愛國主義、集體主義、頑強(qiáng)拼搏的精神.足球是人類交流的另類“語言”,而其他競技方式,無論從深度到廣度,從速度到力度,都難以與足球比肩,就交流與表達(dá)而言,足球是人類最能展露自己天性的運(yùn)動(dòng).
(1)已知某國每年注冊(cè)足球運(yùn)動(dòng)員的人數(shù)(萬人)與該國年度國際足聯(lián)排名線性相關(guān),統(tǒng)計(jì)數(shù)據(jù)如下表:
求變量與的線性回歸方程,并預(yù)測該國年度國際足聯(lián)排名為第時(shí)注冊(cè)足球運(yùn)動(dòng)員的人數(shù);(參考公式:)
(參考數(shù)據(jù):;)
(2)從該國中學(xué)生中選出名男生進(jìn)行顛球挑戰(zhàn),若能一次性連續(xù)顛球超過個(gè)就可獲得一個(gè)獎(jiǎng)勵(lì)足球,每人只能挑戰(zhàn)一次.已知這名男生每人能夠一次性連續(xù)顛球超過個(gè)的概率均為,且相互獨(dú)立.求這名男生獲得獎(jiǎng)勵(lì)足球個(gè)數(shù)的數(shù)學(xué)期望及獲得獎(jiǎng)勵(lì)足球超過個(gè)的概率(精確到).(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,直線()與橢圓交于,兩點(diǎn)(點(diǎn)在軸的上方).
(1)若,求的面積;
(2)是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com