9.已知函數(shù)f(x)=$\frac{{2}^{x}+b}{{2}^{x}+a}$(a、b為常數(shù)),且f(1)=$\frac{1}{3}$,f(0)=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)判斷函數(shù)f(x)在定義域上的奇偶性,并證明.

分析 (Ⅰ)由已知中f(1)=$\frac{1}{3}$,f(0)=0.構(gòu)造方程組,可得a,b值,進(jìn)而得到函數(shù)f(x)的解析式;
(Ⅱ)函數(shù)f(x)為奇函數(shù).利用奇偶性可證得結(jié)論.

解答 解:(Ⅰ)由已知可得f(1)=$\frac{2+b}{2+a}$=$\frac{1}{3}$,f(0)=$\frac{1+b}{1+a}$=0,….(3分)
解得a=1,b=-1,
所以f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$;…(5分)
(Ⅱ) 函數(shù)f(x)為奇函數(shù).
證明如下:f(x)的定義域為R,….(6分)
∵f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{{1-2}^{x}}{{2}^{x}+1}$=-f(x),….(9分)
∴函數(shù)f(x)為奇函數(shù);…(10分)

點評 本題考查的知識點是函數(shù)解析式的求法,函數(shù)的奇偶性,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在正方體ABCD-A1B1C1D1中,如圖E、F分別是BB1,CD的中點,
(1)求證:D1F⊥AE;
(2)求直線EF與CB1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,PA=AB=2,$PB=2\sqrt{2}$,$PC=2\sqrt{3}$,E,F(xiàn)分別為BC,PD的中點.
(1)求證:EF⊥AD;
(2)求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右頂點分別為A、B,上頂點為C,若△ABC是底角為30°的等腰三角形,則$\frac{c}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,已知$sin(A+\frac{π}{6})=2cosA$.
(1)求tanA;
(2)若$B∈(0,\frac{π}{3})$,且$sin(A-B)=\frac{3}{5}$,求sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.要得到函數(shù)y=sinx的圖象,只需將函數(shù)$y=sin(x-\frac{π}{3})$的圖象( 。
A.向右平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{3}$個單位
C.向左平移$\frac{π}{3}$個單位D.向左平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$f(α)=\frac{{sin({π-α})cos({2π-α})sin({-α+\frac{3π}{2}})}}{{sin({\frac{π}{2}+α})sin({-π-α})}}$.
(1)化簡f(α);
(2)若α是第三象限角,且$cos({α+\frac{π}{3}})=\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)曲線y=x4+ax+3在x=1處的切線方程是y=x+b,則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等腰直角△ABC中,∠ABC=90°,AB=BC=2,M,N(不與A,C重合)為AC邊上的兩個動點,且滿足|$\overrightarrow{MN}$|=$\sqrt{2}$,則$\overrightarrow{BM}$•$\overrightarrow{BN}$的取值范圍為( 。
A.[$\frac{3}{2}$,2]B.($\frac{3}{2}$,2)C.[$\frac{3}{2}$,2)D.[$\frac{3}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案