設函數(shù)

(1) 當時,求函數(shù)的單調(diào)區(qū)間;

(2) 當時,求函數(shù)上的最小值和最大值

【解析】:

(1)當

,上單調(diào)遞增.

(2)當時,,其開口向上,對稱軸 ,且過

(i)當,即時,,上單調(diào)遞增,

從而當時, 取得最小值 ,

時, 取得最大值.

(ii)當,即時,令

解得:,注意到,

(注:可用韋達定理判斷,,從而;或者由對稱結合圖像判斷)

 

 

的最小值,

的最大值

綜上所述,當時,的最小值,最大值

解法2(2)當時,對,都有,故

,而 ,

所以

 【解析】:看著容易,做著難!常規(guī)解法完成后,發(fā)現(xiàn)不用分類討論,奇思妙解也出現(xiàn)了:結合圖像感知 時最小,時最大,只需證即可,避免分類討論.本題第二問關鍵在求最大值,需要因式分解比較深的功力,這也正符合了2012年高考年報的“對中學教學的要求——重視高一教學與初中課堂銜接課”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列幾個命題:
①若函數(shù)f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若函數(shù)f(x)是定義域為R的奇函數(shù),對于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個值,當x1<x2時,f(x1)>f(x2),則f(x)是減函數(shù);
④設函數(shù)y=
1-x
+
x+3
的最大值和最小值分別為M和m,則M=
2
m
;
⑤若f(x)是定義域為R的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號是
①④⑤
①④⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(
1-x
x
)=x
,則f(x)的解析式為f(x)=
1
x+1
,(x≠-1)
1
x+1
,(x≠-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=1-2sin(
π
4
-x)cos(
π
4
-x),x∈R,則該函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(
1+x
1-x
)=x
,則f(x)的表達式為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)(文)設函數(shù)y=
1-x2
的曲線繞x軸旋轉一周所得幾何體的表面積

查看答案和解析>>

同步練習冊答案