在三角形△ABC中,若
asinA
c
+
bsinB
c
<sinC
,則三角形ABC的形狀是
 
三角形.
考點:三角形的形狀判斷
專題:計算題
分析:通過已知表達(dá)式,利用正弦定理與勾股定理即可判斷三角形的形狀.
解答: 解:因為在三角形△ABC中,若
asinA
c
+
bsinB
c
<sinC
,
所以由正弦定理并化簡得:a2+b2<c2,
由余弦定理a2+b2-c2=2abcosC,所以cosC<0,所以三角形是鈍角三角形.
故答案為:鈍角.
點評:本題考查三角形的形狀的判斷,正弦定理與勾股定理的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若定義f (n)為n2+1的各位數(shù)字之和(n∈N*),如132+1=170,則f (13)=1+7+0=8.記f1 (n)=f (n),f2 (n)=f[f1 (n)],…,fk+1(n)=f[fk (n)](k∈N*),則f2012 (9)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=
π
2
,AB=AC=2,AA1=6,點E、F分別在棱AA1、CC1上,且AE=C1F=2.
(1)求四棱錐B-AEFC的體積;
(2)求△BEF所在半平面與△ABC所在半平面所成二面角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為半圓的直徑,P為半圓上一點,|AB|=10,∠PAB=a,且sina=
4
5
,建立適當(dāng)?shù)淖鴺?biāo)系.
(1)求A、B為焦點且過P點的橢圓的標(biāo)準(zhǔn)方程.
(2)動圓M過點A,且與以B為圓心,以2
5
為半徑的圓相外切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,如果0<tanAtanB<1,那么△ABC是
 
三角形.(填“鈍角”、“銳角”、“直角”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形AOC的周長是6,中心角是1弧度,則該扇形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C為圓O上三點,線段CO的延長線與線段AB有交點,若
OC
=m
OA
+n
OB
,則m+n的范圍是( 。
A、(0,1)
B、(1,+∞)
C、(-1,0)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中點.
(Ⅰ)求證:A1B∥平面AEC1;
(Ⅱ)若棱AA1上存在一點M,滿足B1M⊥C1E,求AM的長;
(Ⅲ)求平面AEC1與平面ABB1A1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=a(a+1)x2-(2a+1)x+1,當(dāng)a=1,2,3,…,n,…時,其圖象在x軸上截得的弦長依次為d1,d2,…,dn,…,則d1+d2+…+dn為( 。
A、
1
n(n+1)
B、
n
n(n+1)
C、
1
n+1
D、
n
n+1

查看答案和解析>>

同步練習(xí)冊答案