為橢圓上任意一點(diǎn),、為左右焦點(diǎn).如圖所示:
(1)若的中點(diǎn)為,求證;
(2)若,求的值.
(1))證明:在 中,為中位線(xiàn)
(2)
解析試題分析:(1)由橢圓定義知,則,由條件知點(diǎn)、分別是、的中點(diǎn),所以為的中位線(xiàn),則,從而命題得證;(2)根據(jù)橢圓定義,在中有,,又由條件,從這些信息中可得到提示,應(yīng)從余弦定理入手,考慮到,所以需將兩邊平方,得,將其代入余弦定理,得到關(guān)于的方程,從而可得解.
試題解析:(1)證明:在 中,為中位線(xiàn)
5分
(2) ,
在中,
,
12分
考點(diǎn):1.橢圓定義;2.余弦定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓()的右焦點(diǎn)為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓相交于,兩點(diǎn),分別為線(xiàn)段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:.
(1)橢圓的短軸端點(diǎn)分別為(如圖),直線(xiàn)分別與橢圓交于兩點(diǎn),其中點(diǎn)滿(mǎn)足,且.
①證明直線(xiàn)與軸交點(diǎn)的位置與無(wú)關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過(guò)點(diǎn)的兩條互相垂直的直線(xiàn),其中交圓于、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)為,點(diǎn)為拋物線(xiàn)C上的一點(diǎn),且的外接圓圓心到準(zhǔn)線(xiàn)的距離為.
(I)求拋物線(xiàn)C的方程;
(II)若圓F的方程為,過(guò)點(diǎn)P作圓F的2條切線(xiàn)分別交軸于點(diǎn),求面積的最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓 的左、右焦點(diǎn)分別是、,是橢圓右準(zhǔn)線(xiàn)上的一點(diǎn),線(xiàn)段的垂直平分線(xiàn)過(guò)點(diǎn).又直線(xiàn):按向量平移后的直線(xiàn)是,直線(xiàn):按向量平移后的直線(xiàn)是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當(dāng)離心率最小且時(shí),求橢圓的方程。
(3)若直線(xiàn)與相交于(2)中所求得的橢圓內(nèi)的一點(diǎn),且與這個(gè)橢圓交于、兩點(diǎn),與這個(gè)橢圓交于、兩點(diǎn)。求四邊形ABCD面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線(xiàn)關(guān)于軸對(duì)稱(chēng),它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),,均在拋物線(xiàn)上.
(1)求該拋物線(xiàn)方程;
(2)若AB的中點(diǎn)坐標(biāo)為,求直線(xiàn)AB方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知定點(diǎn)、,動(dòng)點(diǎn)N滿(mǎn)足(O為坐標(biāo)原點(diǎn)),,,,求點(diǎn)P的軌跡方程.
(2)如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線(xiàn)與直線(xiàn)分別交于點(diǎn),
(ⅰ)設(shè)直線(xiàn)的斜率分別為、,求證:為定值;
(ⅱ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線(xiàn)過(guò)點(diǎn).
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)若拋物線(xiàn)與直線(xiàn)交于、兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓直線(xiàn)與圓相切,且交橢圓于兩點(diǎn),是橢圓的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O為坐標(biāo)原點(diǎn),若求橢圓的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn),直線(xiàn)AS,BS與直線(xiàn)分別交于M,N兩點(diǎn),求線(xiàn)段MN的長(zhǎng)度的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com